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BACKGROUND & MOTIVATION



Large Graphs

 Large-scale graphs become available
« Facebook: 1.11 billion active users / month(*1)
 Twitter: 140 million active users / day
340 million new posts / day (*2)
« And more -

* A lot of techniques for analyzing massive-scale graph
« Massive data require so much time for analysis ®
o It is important to analyze large scale data quickly ©

(*1) “Key Facts”, http://newsroom.fb.com/Key-Facts
(*2) http://dev.twitter.com/media/authors



I Graph Clustering

« Graph clustering is one of the most important methods
« Community detection over social networks
 Event detection from microblogging services
e Brain Analysis, Image segmentation, -
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I Modularity-based Graph Clustering

e Clustering methods which find the division of graph
to maximize the modularity measure

« Improvement of clustering speed

ﬂ Our research target

There are no algorithms @

iB ~ 100M 1

nodes /hour

10M nodes/hour  }------ BGLL|[Blondel et al., 2008]

1M nodes/hour  |------- CNM(Clauset et al., 2004], WT][Wakita et al., 2008]
100k nodes/hour }------; Newman method [Newman et al., 2004]

10k nodes/hour  }------ { Girvan-Newman method [Girvan et al., 2004]

|



I Objective and Contributions
 Objective

Fast graph clustering method with high modularity

3 key techniques
1. Incremental nodes aggregation
2. Incremental nodes pruning
3. Efficient ordering of nodes selections

« Contributions of our algorithm
« Efficiency

« Considerably faster than BGLL
e Clusters 100M nodes within 3 minutes

« High Modularity
« Scores high modularity as same as BGLL

« Effectiveness
« Improves performances for complex networks



PRELIMINARIES



Modularity

« Modularity evaluates the strength of division of a graph
into clusters [Newman and Girvan 2004]

 Finding the division which maximizes modularity is NP-complete
= A lot of greedy approaches were proposed
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State of the art algorithm: BGLL

« Continuing following passes until the modularity
score is maximized

Pass =

pr—

1st phase: Local clustering

1) Selects a node
2) Computes the modularity gain

3) Places the neighbor node in the same cluster
2nd phase: Data reduction

« Aggregates all nodes in the same cluster as a single
node

Continue to the next pass



PROPOSED ALGORITHM
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I Overview of proposed algorithm

Our method BGLL
- : N A
3 key techniques 7 - Batch based aggregation
- Incremental aggregation |( )|+ Random ordering
« Incremental pruning /| y
« Efficient ordering

- P /

e —

« Clustering coefficient
« Power-law degree distribution
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Idea 1 : Clustering coefficient

« Complex networks have large clustering coefficient

e Clustering coefficient is a measure of degree to which nodes
in @ graph tend to cluster together

- There are many duplicated nodes/edges in a graph which
has large clustering coefficient

between different clusters

Duplicated edges
are trivially obtained

Nodes whose clustersJ

within a cluster

{ Internal nodes
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Frequency

Idea 2 : Power-law degree distribution

« Complex networks have highly skewed degree
distribution following the power-law distribution

« Most of nodes only have a few neighbor nodes, and only few
nodes have large number of neighbor nodes

- The frequency F of nodes with degree dis F < d™ %

Example of degree distribution
of complex network
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« Random ordering of node
selection leads redundant
computation
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Mumber of degrees for each node
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Incremental Aggregation

« Incrementally aggregate nodes which belong to the

same cluster

e It aggregates duplicated edges between clusters while keeping

the graph semantics
« Example)

Aggregate

Same cluster

Duplicated
edges

Aggregated
node
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Incremental pruning

« Incrementally prune nodes whose cluster is trivially
obtained

« We can easily assign nodes to clusters without computing
modularity gains

e From the graph structure, there are 2 patterns of pruning

Pattern A cluster Pattern B

A node only has a A node surrounded by
single neighbor node @ nodes belong to same cluster

r Non-trivial @
Check neighbors’ cluster

Easy to prune nodes @
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Incremental pruning (Cont.)

« Efficient pruning approach for pattern 2

* All nodes within the same cluster have been aggregated to a
node by incremental aggregation

« We can find all prunable nodes by obtaining nodes such that
they have only a single adjacent node

cluster

aggregated
Incremental cluster
Aggregate

A node of pattern B is
converted to pattern A

O
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I Efficient ordering of node selection

« Dynamically selects a nhode with the smallest degree
« Example) Node A and B being assigned to the same cluster

)) Select from A
many computations __ It's more efficient to compute

Select from B from node B than node A
2 computations

By selecting node with the smallest degree, we can avoid
producing super-cluster structures
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EVALUATION
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Datasets & Experimental Environment

 Real world datasets
e 2 Social networks and 3 Web graphs of IP domains

Dataset 4 |E| Skewness of
degree distribution

(44

dblp-2010 326,186 1,615,400 2.82
ljournal-2008 5,363,260 79,023,142 2.29
uk-2005 39,459,925 936,364,282 1.71
webbase 118,142,155 1,019,903,190 2.14
uk2007-05 105,896,555 3,738,733,648 1.51

« Experimental Environment

« All experiments were conducted on a Linux 2.6.18 server with
Intel Xeon CPU L5640 2.27GHz and 144GB RAM

« Run all methods on 1 core, 1CPU
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Wall clock time [s]

Computational time

7
o ' ' ' BGLL —— | - Proposed is up to 60 times
10° k Our mmmm | faster than the state of
05 L { the art algorithm BGLL

At | + Graphs with highly skewed
107 F 1 degree distribution run faster
10° F ] than the other datasets
102 F -
o' L 1 [ 100 million nodes

L 1— and 1 billion edges

107 E . in 156 seconds!

1 [ :
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I Computational time - power-law differences
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Computational time - size differences
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Modularity score

« Modularity score for datasets

 Large modularity score means the output of algorithms is
well clustered

« Proposed method achieves almost same modularity scores
as/slightly higher than BGLL

Table 2: Modularity ¢)

dblp-2010 ljournal-2008 uk-2005 webbase-2001 uk-2007-05
Proposed 0.90 0.74 (.98 0.98 0.97
BGLL (.88 0.74 0.97 0.96 0.97
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CONCLUSION
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Conclusion

 Fast clustering algorithm for large graphs

« Our solution
« Incremental aggregation
« Incremental pruning
« Efficient ordering of nodes selections

« Contribution of our algorithm
« Efficiency
« Considerably faster than BGLL
e Clusters 100M nodes within 3 minutes

« High Modularity
« Scores high modularity as same as BGLL

« Effectiveness
« Improves performance for complex networks
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