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BACKGROUND & MOTIVATION
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Large Graphs
• Large-scale graphs become available

• Facebook: 1.11 billion active users / month(*1)
• Twitter: 140 million active users / day

340 million new posts / day (*2)
• And more …

• A lot of techniques for analyzing massive-scale graph
• Massive data require so much time for analysis 
• It is important to analyze large scale data quickly 

(*1) “Key Facts”, http://newsroom.fb.com/Key-Facts
(*2) http://dev.twitter.com/media/authors



4© 2013  NTT Software Innovation Center

• Graph clustering is one of the most important methods
• Community detection over social networks
• Event detection from microblogging services
• Brain Analysis, Image segmentation, …

Graph Clustering

Densely connected

Sparsely connected

Clustering 
analysis
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• Clustering methods which find the division of graph 
to maximize the modularity measure

• Improvement of clustering speed 

Modularity-based Graph Clustering

Girvan-Newman method [Girvan et al., 2004]10k nodes/hour

10M nodes/hour BGLL[Blondel et al., 2008]

100k nodes/hour Newman method [Newman et al., 2004]

1M nodes/hour CNM[Clauset et al., 2004]，WT[Wakita et al., 2008]

1B 〜 100M 
nodes/hour

Our research target

There are no algorithms 
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• Objective
Objective and Contributions

Fast graph clustering method with high modularity

• 3 key techniques
1. Incremental nodes aggregation 
2. Incremental nodes pruning
3. Efficient ordering of nodes selections

• Contributions of our algorithm
• Efficiency

• Considerably faster than BGLL
• Clusters 100M nodes within 3 minutes

• High Modularity
• Scores high modularity as same as BGLL

• Effectiveness
• Improves performances for complex networks
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PRELIMINARIES
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• Modularity evaluates the strength of division of a graph 
into clusters [Newman and Girvan 2004]

• Finding the division which maximizes modularity is NP-complete
⇒ A lot of greedy approaches were proposed

Modularity
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The fraction of outgoing edges
from a cluster i
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• Continuing following passes until the modularity 
score is maximized 

State of the art algorithm: BGLL

Pass =

1st phase: Local clustering
1) Selects a node
2) Computes the modularity gain
3) Places the neighbor node in the same cluster

2nd phase: Data reduction
• Aggregates all nodes in the same cluster as a single 

node

1st phase 2nd phase

Continue to the next pass
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PROPOSED ALGORITHM
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• 3 key techniques
• Incremental aggregation 
• Incremental pruning
• Efficient ordering

Overview of proposed algorithm
Our method BGLL

• Batch based aggregation
• Random ordering

• Clustering coefficient
• Power-law degree distribution
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• Complex networks have large clustering coefficient
• Clustering coefficient is a measure of degree to which nodes 

in a graph tend to cluster together
• There are many duplicated nodes/edges in a graph which 

has large clustering coefficient

• edu

Idea 1 : Clustering coefficient

Cluster

Internal nodes
within a cluster

Duplicated edges
between different clusters Nodes whose clusters

are trivially obtained
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Idea 2 : Power-law degree distribution
• Complex networks have highly skewed degree 

distribution following the power-law distribution
• Most of nodes only have a few neighbor nodes, and only few 

nodes have large number of neighbor nodes
• The frequency F of nodes with degree d is ࢻି

• Random ordering of node 
selection leads redundant 
computation

Example of degree distribution
of complex network
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Incremental Aggregation

• Incrementally aggregate nodes which belong to the 
same cluster

• It aggregates duplicated edges between clusters while keeping 
the graph semantics

• Example)

Same cluster

2

2

Aggregated 
node

Aggregate

Duplicated 
edges
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• Incrementally prune nodes whose cluster is trivially 
obtained

• We can easily assign nodes to clusters without computing 
modularity gains

• From the graph structure, there are 2 patterns of pruning

Incremental pruning

A

B

A node only has a 
single neighbor node

Pattern A
A node surrounded by 
nodes belong to same cluster

Pattern Bcluster

Check neighborsʼ cluster

Non-trivial Easy to prune nodes
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Incremental pruning (Cont.)
• Efficient pruning approach for pattern 2

• All nodes within the same cluster have been aggregated to a 
node by incremental aggregation

• We can find all prunable nodes by obtaining nodes such that 
they have only a single adjacent node

Incremental
Aggregate

cluster

aggregated
cluster

A node of pattern B is 
converted to pattern A
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Efficient ordering of node selection
• Dynamically selects a node with the smallest degree 

• Example) Node A and B being assigned to the same cluster

• By selecting node with the smallest degree, we can avoid 
producing super-cluster structures

A B Select from A

Select from B
many computations

2 computations

Itʼs more efficient to compute 
from node B than node A
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EVALUATION
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Datasets & Experimental Environment
• Real world datasets

• 2 Social networks and 3 Web graphs of IP domains

• Experimental Environment
• All experiments were conducted on a Linux 2.6.18 server with 

Intel Xeon CPU L5640 2.27GHz and 144GB RAM
• Run all methods on 1 core, 1CPU

Dataset |V| |E| Skewness of
degree distribution

ࢻ

dblp-2010 326,186 1,615,400 2.82
ljournal-2008 5,363,260 79,023,142 2.29

uk-2005 39,459,925 936,364,282 1.71
webbase 118,142,155 1,019,903,190 2.14

uk2007-05 105,896,555 3,738,733,648 1.51
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Computational time

100 million nodes
and 1 billion edges
in 156 seconds!

320k nodes
within 1 seconds!

・Proposed is up to 60 times
faster than the state of
the art algorithm BGLL

・Graphs with highly skewed
degree distribution run faster
than the other datasets
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Computational time – power-law differences
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Computational time – size differences
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• Modularity score for datasets
• Large modularity score means the output of algorithms is 

well clustered
• Proposed method achieves almost same modularity scores 

as/slightly higher than BGLL

Modularity score
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CONCLUSION
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• Fast clustering algorithm for large graphs
• Our solution

• Incremental aggregation
• Incremental pruning
• Efficient ordering of nodes selections

• Contribution of our algorithm
• Efficiency

• Considerably faster than BGLL
• Clusters 100M nodes within 3 minutes

• High Modularity
• Scores high modularity as same as BGLL

• Effectiveness
• Improves performance for complex networks

Conclusion


