
© 2013 NTT Software Innovation Center

Fast Algorithm for Modularity-based
Graph Clustering

Hiroaki Shiokawa
NTT Software Innovation Center, NTT Corporation,

July 23rd , 2013

2© 2013 NTT Software Innovation Center

BACKGROUND & MOTIVATION

3© 2013 NTT Software Innovation Center

Large Graphs
• Large-scale graphs become available

• Facebook: 1.11 billion active users / month(*1)
• Twitter: 140 million active users / day

340 million new posts / day (*2)
• And more …

• A lot of techniques for analyzing massive-scale graph
• Massive data require so much time for analysis 
• It is important to analyze large scale data quickly 

(*1) “Key Facts”, http://newsroom.fb.com/Key-Facts
(*2) http://dev.twitter.com/media/authors

4© 2013 NTT Software Innovation Center

• Graph clustering is one of the most important methods
• Community detection over social networks
• Event detection from microblogging services
• Brain Analysis, Image segmentation, …

Graph Clustering

Densely connected

Sparsely connected

Clustering
analysis

5© 2013 NTT Software Innovation Center

• Clustering methods which find the division of graph
to maximize the modularity measure

• Improvement of clustering speed

Modularity-based Graph Clustering

Girvan-Newman method [Girvan et al., 2004]10k nodes/hour

10M nodes/hour BGLL[Blondel et al., 2008]

100k nodes/hour Newman method [Newman et al., 2004]

1M nodes/hour CNM[Clauset et al., 2004]，WT[Wakita et al., 2008]

1B 〜 100M
nodes/hour

Our research target

There are no algorithms 

6© 2013 NTT Software Innovation Center

• Objective
Objective and Contributions

Fast graph clustering method with high modularity

• 3 key techniques
1. Incremental nodes aggregation
2. Incremental nodes pruning
3. Efficient ordering of nodes selections

• Contributions of our algorithm
• Efficiency

• Considerably faster than BGLL
• Clusters 100M nodes within 3 minutes

• High Modularity
• Scores high modularity as same as BGLL

• Effectiveness
• Improves performances for complex networks

7© 2013 NTT Software Innovation Center

PRELIMINARIES

8© 2013 NTT Software Innovation Center

• Modularity evaluates the strength of division of a graph
into clusters [Newman and Girvan 2004]

• Finding the division which maximizes modularity is NP-complete
⇒ A lot of greedy approaches were proposed

Modularity

ܳ ൌ෍
݁௜௜
2݉ െ	

∑ ݁௜௝௝∈஼

2݉

ଶ

	
௜∈஼

Set of cluster：			ܥ
݁௜௝：Number of edges between cluster ݅, ݆
݉ ：Total number of edges in a graph

The fraction of the edges
within cluster i

The fraction of outgoing edges
from a cluster i

9© 2013 NTT Software Innovation Center

• Continuing following passes until the modularity
score is maximized

State of the art algorithm: BGLL

Pass =

1st phase: Local clustering
1) Selects a node
2) Computes the modularity gain
3) Places the neighbor node in the same cluster

2nd phase: Data reduction
• Aggregates all nodes in the same cluster as a single

node

1st phase 2nd phase

Continue to the next pass

10© 2013 NTT Software Innovation Center

PROPOSED ALGORITHM

11© 2013 NTT Software Innovation Center

• 3 key techniques
• Incremental aggregation
• Incremental pruning
• Efficient ordering

Overview of proposed algorithm
Our method BGLL

• Batch based aggregation
• Random ordering

• Clustering coefficient
• Power-law degree distribution

12© 2013 NTT Software Innovation Center

• Complex networks have large clustering coefficient
• Clustering coefficient is a measure of degree to which nodes

in a graph tend to cluster together
• There are many duplicated nodes/edges in a graph which

has large clustering coefficient

• edu

Idea 1 : Clustering coefficient

Cluster

Internal nodes
within a cluster

Duplicated edges
between different clusters Nodes whose clusters

are trivially obtained

13© 2013 NTT Software Innovation Center

Idea 2 : Power-law degree distribution
• Complex networks have highly skewed degree

distribution following the power-law distribution
• Most of nodes only have a few neighbor nodes, and only few

nodes have large number of neighbor nodes
• The frequency F of nodes with degree d is ࢻି

• Random ordering of node
selection leads redundant
computation

Example of degree distribution
of complex network

14© 2013 NTT Software Innovation Center

Incremental Aggregation

• Incrementally aggregate nodes which belong to the
same cluster

• It aggregates duplicated edges between clusters while keeping
the graph semantics

• Example)

Same cluster

2

2

Aggregated
node

Aggregate

Duplicated
edges

15© 2013 NTT Software Innovation Center

• Incrementally prune nodes whose cluster is trivially
obtained

• We can easily assign nodes to clusters without computing
modularity gains

• From the graph structure, there are 2 patterns of pruning

Incremental pruning

A

B

A node only has a
single neighbor node

Pattern A
A node surrounded by
nodes belong to same cluster

Pattern Bcluster

Check neighborsʼ cluster

Non-trivial Easy to prune nodes

16© 2013 NTT Software Innovation Center

Incremental pruning (Cont.)
• Efficient pruning approach for pattern 2

• All nodes within the same cluster have been aggregated to a
node by incremental aggregation

• We can find all prunable nodes by obtaining nodes such that
they have only a single adjacent node

Incremental
Aggregate

cluster

aggregated
cluster

A node of pattern B is
converted to pattern A

17© 2013 NTT Software Innovation Center

Efficient ordering of node selection
• Dynamically selects a node with the smallest degree

• Example) Node A and B being assigned to the same cluster

• By selecting node with the smallest degree, we can avoid
producing super-cluster structures

A B Select from A

Select from B
many computations

2 computations

Itʼs more efficient to compute
from node B than node A

18© 2013 NTT Software Innovation Center

EVALUATION

19© 2013 NTT Software Innovation Center

Datasets & Experimental Environment
• Real world datasets

• 2 Social networks and 3 Web graphs of IP domains

• Experimental Environment
• All experiments were conducted on a Linux 2.6.18 server with

Intel Xeon CPU L5640 2.27GHz and 144GB RAM
• Run all methods on 1 core, 1CPU

Dataset |V| |E| Skewness of
degree distribution

ࢻ

dblp-2010 326,186 1,615,400 2.82
ljournal-2008 5,363,260 79,023,142 2.29

uk-2005 39,459,925 936,364,282 1.71
webbase 118,142,155 1,019,903,190 2.14

uk2007-05 105,896,555 3,738,733,648 1.51

20© 2013 NTT Software Innovation Center

Computational time

100 million nodes
and 1 billion edges
in 156 seconds!

320k nodes
within 1 seconds!

・Proposed is up to 60 times
faster than the state of
the art algorithm BGLL

・Graphs with highly skewed
degree distribution run faster
than the other datasets

21© 2013 NTT Software Innovation Center

Computational time – power-law differences

22© 2013 NTT Software Innovation Center

Computational time – size differences

23© 2013 NTT Software Innovation Center

• Modularity score for datasets
• Large modularity score means the output of algorithms is

well clustered
• Proposed method achieves almost same modularity scores

as/slightly higher than BGLL

Modularity score

24© 2013 NTT Software Innovation Center

CONCLUSION

25© 2013 NTT Software Innovation Center

• Fast clustering algorithm for large graphs
• Our solution

• Incremental aggregation
• Incremental pruning
• Efficient ordering of nodes selections

• Contribution of our algorithm
• Efficiency

• Considerably faster than BGLL
• Clusters 100M nodes within 3 minutes

• High Modularity
• Scores high modularity as same as BGLL

• Effectiveness
• Improves performance for complex networks

Conclusion

