Aggregation Papers!

UW DB Seminar Slides 2015-11-09
Dylan Hutchison, Dominik Mortiz,
Kanit "Ham" Wongsuphasawat

Motivation

- query may be fuzzy (probability rather than boolean value)
- For example, redness of an object varies.

m fields

X1 | X2 | X3 : . .
Al 1l 2.7 - Each attribute has a scoring function
" B|.5(/.3/.3 - Goal: Query based on Ranking score that
= e [e] 4 combines graded attributes through an
b|.3].1].9 aggregation function
vy E|.8|.4]|.6

redness images from www.cse.iitd.ac.in/~ramanath/CSL868-
2011/slides/suresh.pptx

Incorporating User Preferences in
Multimedia Queries

Ronald Fagin, Edward L. Wimmers. ICDT 1997: 247-261.

Goal: Formula for weighted score combination for any
aggregation function.

http://nwds.cs.washington.edu/files/nwds/pdf/fagin_wimmers.pdf

Based On & Compatible

- Based on
- if all weights are equal, the resulting score is
equivalent to unweighted score.
- Compatible

- if a particular argument has zero weight,
then it can be dropped without affecting result.

These two properties are essential to create a weighted collection,

but not sufficient for determining a unique weighted collection

Local Linearity

- Combining with the other two properties produces a unique weight collection

- order-equivalence: having similar order of importance
- (.3,.5,.2)is order-equivalent to (.2, .7, .1)
- Local linearity: balance between order equivalent weightings

o o Formally, we say that a weighted collection F
of scoring functions is locally linear if whenever © and @' are order-equivalent
and o € [0, 1], then

Ja0+(1-a)e (X)) =a- fo(X) + (1 —a): fo(X).

weight i i}
Qfﬂ s ﬂlﬂﬂrﬂdbﬂﬂ', aﬂ{l} > sﬂ'{!] 2 e 2 oﬂ{ﬂﬂ'

oli] = {o(1),...,0(i)}, for 1 <i<m = set of indices of the i largest 6;'s.
and m = card(])
weight score m—1 weight score

fo(X) =m - Os(m) - bom)(X) + i (Ooi) — Oo(i+1) * boa)(X). (2)

=

rewrite (2) as a linear combination of the #;’s:

fe_(_X) = 0,(1) * bop)(X) + D Oops) - (i - bopy(X) — (i — 1) bop—1)(X)). (3)

i=2
fe depend only on by{1}s. .., bofm]
Example: ;= 3, each by is min, and 6; > @, > 6

fe is a convex combination of the three terms z;, min(z;, z2), and min(z;, z2,z3) only,

Inherited Properties

The weighted function F(B) inherits properties of combined scoring functions if
every scoring function in B:

is continuous, is monotonic, is translation-preserving,

satisfies betweenness, satisfies identity

Also, If B is symmetric, then F(B) is symmetric.

Optimal aggregation
algorithms for middleware

Ronald Fagin, Amnon Lotem, Moni Naor. PODS 2001.

Goal: Optimizing Top-K query

http://dl.acm.org/citation.cfm?id=375567
http://researcher.watson.ibm.com/researcher/files/us-fagin/jcss03.pdf
http://dl.acm.org/citation.cfm?id=375567

Table

m fields

X3

X5

Xy

ntations/Week11/optagg.pdf

s/cs856/F05/Prese

u/course

o.ca/~tozs

https://cs.uwaterlo

Images from

Middleware (Data Integration Systems)

Top-k results

*

o Cdenae
Random Access //'/ \‘\

X, m data
Sources
. (m=4)

Images from
https://cs.uwaterloo.ca/~tozsu/courses/cs856/F05/Presentations/Week11/optagg.pdf

Middleware (Data Integration Systems)

Top-k results

Aggregation function:

T Middleware ¥ t (x;, Xz, X3, X,)

Random Access

« ites

£ is i i

Images from
https://cs.uwaterloo.ca/~tozsu/courses/cs856/F05/Presentations/Week11/optagg.pdf

Monotone Aggregation Functions

< ey X) €
min(), max(), avg(), ... V xSy > X, X e X) SHY,, Yo s V)

A LX) AX)
X X
> >
monotone strictly monotone

Images from
https://cs.uwaterloo.ca/~tozsu/courses/cs856/F05/Presentations/Week11/optagg.pdf

Base Problem

Random Access Table A
w 9 9 9 A w, .9
X 4 5 4 9 z, 4
y 2 3 4 2 X, .4
z 4 5 2 3 y, .2

Access sorted lists “in parallel”.

B c D |dea for both Fagin and Threshold
w9 | NG Do sorted access (and the
x,5 | x4 z, 3 corresponding random access) until
you know you have seen the top k

answers.

On seeing a new (object x, grade) in a sorted list:
Find the other grades via random access to x and compute x’s overall grade

Check stopping condition!

Fagin: Stop when k objects seen in all sorted lists.
Threshold: Stop when k seen objects have overall grade = threshold
(threshold is the overall grade of worst grades seen)

Fagin’s Algorithm

FA

Random Access Table A B C D Cache
w 9 9 9 1 w, .9 w, .9 w, .9 X, .9 w 2.8
X 4 5 4 9 z, 4 X, .5 X, .4 z,.3 _ _
Aggregation is sum
y 2 3 4 2 X, .4 z, .5 y, .4 y, .2 Computing Top 1
z 4 5 2 3 Yy, .2 y,.3 z, .2 w, .1

FA

Random Access Table A B C D Cache
w 9 9 9 1 w, .9 w, .9 w, .9 X, .9 w 2.8
X 4 5 4 9 z, 4 X, .5 X, .4 z,.3 _ _
Aggregation is sum
y |2 |3 4 2 X, .4 z,.5 y, 4 Y, .2 Computing Top 1
z 4 5 2 3 y, .2 Yy, .3 z, .2 w, .1

No need to re-random-lookup w; w is in cache

FA

Random Access Table A B C D Cache
w 9 9 9 1 w, .9 w, .9 w, .9 X, .9 w 2.8
X 4 5 4 9 z, 4 X, .5 X, .4 z,.3 _ _
Aggregation is sum
y |2 |3 4 2 X, .4 z,.5 y, 4 Y, .2 Computing Top 1
z 4 5 2 3 y, .2 Yy, .3 z, .2 w, .1

No need to re-random-lookup w; w is in cache

FA

Random Access Table A B C D Cache
w 9 9 9 1 w, .9 w, .9 w, .9 X, .9 w 2.8
X 4 5 4 9 z, 4 X, .5 X, .4 z,.3

x |23 Aggregation is sum

y 2 |3 |4 |2 X, .4 z,.5 y, .4 y, .2 Computing Top 1

FA

Random Access Table A B C D Cache
w 9 9 9 1 w, .9 w, .9 w, .9 X, .9 w 2.8
X 4 5 4 9 z, 4 X, .5 X, .4 z,.3

x |23 Aggregation is sum

y 2 |3 |4 |2 X, .4 z,.5 y, .4 y, .2 Computing Top 1

FA

Random Access Table A B C D Cache
w 9 9 9 1 w, .9 w, .9 w, .9 X, .9 w 2.8
X 4 5 4 9 z, 4 X, .5 X, .4 z,.3

x |23 Aggregation is sum

y 2 |3 |4 |2 X, .4 z,.5 y, .4 y, .2 Computing Top 1

FA

Random Access Table A B C D Cache
w 9 9 9 1 w, .9 w, .9 w, .9 X, .9 w 2.8
X 4 5 4 9 z, 4 X, .5 X, .4 z,.3

x |23 Aggregation is sum

y 2 |3 |4 |2 X, .4 z,.5 y, .4 y, .2 Computing Top 1

FA

Random Access Table A B C D Cache
w 9 9 9 1 w, .9 w, .9 w, .9 X, .9 w 2.8
X 4 5 4 9 z, 4 X, .5 X, .4 z, .3

x |23 Aggregation is sum

y 2 |3 |4 |2 X, .4 z,.5 y, .4 y, .2 Computing Top 1

FA

Random Access Table A B C D Cache
w 9 9 9 1 w, .9 w, .9 w, .9 X, .9 w 2.8
X 4 5 4 9 z, 4 X, .5 X, .4 z, .3 _ _
X 2.3 Aggregation is sum
y |2 |3 4 2 X, .4 z,.5 y, 4 Y, .2 Computing Top 1
z 4 5 2 3 y, .2 Yy, .3 z, .2 w, .1 z 14

Stop! Object x seen in all lists.
Answer is w with overall grade 2.8

“Proof”: Any unseen object (such as y) has grades < grades of x.
Therefore any unseen object must have overall grade < overall grade of x.

Threshold Algorithm

TA

Random Access Table

B C D Cache Threshold

w, .9 w, .9 X, .9 4

Aggregation is sum
z,.5 y, .4 y, .2 k=1 (top 1 object)

e Bounded buffers: only need store k
(object, overall_grade) in cache
e Stop when overall_grade = threshold

TA

Random Access Table A B C D Cache Threshold
w 9 9 9 A w, .9 w, .9 w, .9 X, .9 w 2.8 3.9
X 4 5 4 9 z, 4 X, .5 X, .4 z,.3

Aggregation is sum

y 2 3 4 2 X, .4 z,.5 y, .4 y, .2 k=1 (top 1 object)

TA

Random Access Table

B C D Cache Threshold

w, .9 w, .9 X, .9 w 2.8 3.8

Aggregation is sum
z,.5 y, .4 y, .2 k=1 (top 1 object)

w stored in cache; no need to lookup again

TA

Random Access Table

B C D Cache Threshold

w, .9 w, .9 X, .9 w 2.8 3.7

Aggregation is sum
z,.5 y, .4 y, .2 k=1 (top 1 object)

w stored in cache; no need to lookup again

TA

Random Access Table A B C D Cache Threshold
w 9 9 9 A w, .9 w, .9 w, .9 X, .9 w 2.8 3.6
X 4 5 4 9 z, 4 X, .5 X, .4 z,.3

X > - Aggregation is sum

y 2 3 4 2 X, .4 z,.5 y, .4 y, .2 k=1 (top 1 object)

TA

Random Access Table A B C D Cache Threshold
w 9 9 9 A w, .9 w, .9 w, .9 X, .9 w 2.8 3.1
X 4 5 4 9 z, 4 X, .5 X, .4 z,.3

X > - Aggregation is sum

y 2 3 4 2 X, .4 z,.5 y, .4 y, .2 k=1 (top 1 object)

TA

Random Access Table A B C D Cache Threshold
w 9 9 9 A w, .9 w, .9 w, .9 X, .9 w 2.8 2.7
X 4 5 4 9 z, 4 X, .5 X, .4 z, .3 . .
Aggregation is sum
y 2 3 4 2 X, .4 z,.5 y, .4 y, .2 k=1 (top 1 object)
2 4 '5 2 | 3 y, .2 y, .3 z, 2 W, .1 Need to lookup x again if not kept in cache

Stop! Overall grade of object w 2 threshold
Answer is object w with overall grade 2.8

“Proof”: Any unseen object (such as y) has grades < worst grades seen so far in sorted lists.

Object w has overall grade = overall grade of worst grades seen so far (which is the threshold)
Therefore any unseen object’s overall grade

< overall grade of worst objects seen so far (the threshold)

< w’s overall grade

Proof:. TA finds the top k answers

Let Y be set containing the k objects that have been seen in TA.
Need to show that fory € Yand z €, t(z) < t(y).

z = (X, X,, ..., X_), since z has not been seen:

X<X »>t(z) = tX;, X, ..., X) <X, X, ..., X) = 7 (from monotonicity of t)

By definition of Y, we have t(y) >t

So, t(y) >7 >t(2)

Instance Optimality

We say that an algorithm % is instance optimal over A and D if € A and if for every .oZ € A and
every ZeD we have

cost(B,2) = O(cost(A,%)). (2}

Eq. (2) means that there are constants ¢ and ¢ such that cost(#, 2)<c - cost(.«/,Z) + ¢ for every
choice of .o« €A and ZeD. We refer to ¢ as the optimality ratio.

Intuition: TA is instance optimal

If A is an algorithm that stops sooner than TA on some database, before A finds k
objects whose grade is at least equal to the threshold value r; then A must make a
mistake on some database, since the next object in each list might have grade x. in
each list i; and hence have grade t(x,, x,, ..., X_) = 7. This new object, which A has
not even seen, has a higher grade than some object in the top k list that was output
by A; and so A erred by stopping too soon.

True for algorithms that do not make “wild guesses”
(random access to object not yet seen in a sorted list),
or for databases that satisfy the distinctness property
(no two grades in a sorted list are the same),
and strictly monotone aggregation functions

Approximation algorithm

- Find top k such that 6 t(y) > t(2)
- Simply adjust threshold to 7/6

No Random Access Algorithm (NRA)

- Can’t calculate exact score / order of the top-k
- But still can calculate lower and upper bound of each objects

- Sequential access until there are k objects whose lower bound > the upper
bound of all other objects

No Random Access Algorithm (NRA)

Access sequentially all lists in parallel until there are k objects for which the lower
bound (unknown to 0) is higher than the upper bound (unknown to x) of all other

objects.
R, R, R, LB | UB
X, |1 X, (0.8 X, | 0.8 X, | 1126/ 1 1+
X, 0.8 X, [0.7 X, 0.6 X, | .8 (26 0.8 0.8
X; 105 X |08 X, 10.2 X, | .8 (26 0.8 0.8
X, 103 X, 10.2 X; | 0.1
X; |01 X, |01 X, 1 0 Aggregation: sum

Images from

http://alumni.cs.ucr.edu/~skulhari/Top-k-Query.pdf

No Random Access Algorithm (NRA)

Access sequentially all lists in parallel until there are k objects for which the lower
bound (unknown to O) is higher than the upper bound (unknown to x) of all other
objects.

LB | UB
16|22 0.8+0.8+0 0.8+0.8+0.6
1.3 |21 0+0.7+0.6 0.5+0.7+0.6

N

(4]

. |1 23] 1+0+0 1+0.7+0.6
., 108]23 0+0+0.8 0.8+0.7+0.8

X | X | X | X

Images from
http://alumni.cs.ucr.edu/~skulhari/Top-k-Query.pdf

No Random Access Algorithm (NRA)

Access sequentially all lists in parallel until there are k objects for which the lower
bound (unknown to O) is higher than the upper bound (unknown to x) of all other

objects.
LB | UB
X, [1.8]18
X, [16]18
X, [1.5]15
X, [0.8]|16

Images from
http://alumni.cs.ucr.edu/~skulhari/Top-k-Query.pdf

No Random Access Algorithm (NRA)

Access sequentially all lists in parallel until there are k objects for which the lower
bound (unknown to O) is higher than the upper bound (unknown to x) of all other

objects.

Return top 2 objects

Images from
http://alumni.cs.ucr.edu/~skulhari/Top-k-Query.pdf

No Random Access Algorithm - Visual

o P— [IIIIIII IIIIIIIII ol IIIIIIII _________

Output set Y Other seen objects Output set Y Other seen objects

Combined Algorithm (CA)

- Combining TA and NRA

- Run NRA but also run random access step for every h steps

- NRA and CA are instance optimal when the aggregation function is monotone

Discussion / Questions

- What if tis not monotone? For example with negative values in DB.

- How does the algorithm change for bottom k?

- Why the “no wild guesses” / strict monotone and distinctness clause?

- Can we restrict sorted access?

- Do we have to get next value from all lists in TA or can we do it step by step? Is
there an early stopping condition? Can we rule out one list?

- Can we avoid random requests in some cases (for instance for sum, avg, ...)?

Can we restrict sorted access? Yes, we can restrict sorted access by letting the
threshold calculation assume 1 for attributes with no sorted access

TA - Non-lockstep sorted list access

Random Access Table

w 9
X 4
y 2
z 4

9

2

4

4

C D Cache Threshold
w, .9 X, .9 4
X, .4 z,.3

y, 4 y, .2 PY

Bounded buffers: only need store k
(object, overall_grade) in cache
Stop when overall_grade = threshold

Aggregation is sum
k=1 (top 1 object)

TA

Random Access Table A B C D Cache Threshold
w 9 9 9 A w, .9 w, .9 w, .9 X, .9 X 2.3 3.9
X 4 5 4 9 z, 4 X, .5 X, .4 z,.3

Aggregation is sum

y 2 |3 |4 |2 X, .4 z,.5 y, .4 y, .2 Computing Top 1

TA

Random Access Table A B C D Cache Threshold
w 9 9 9 A w, .9 w, .9 w, .9 X, .9 w 2.8 3.8
X 4 5 4 9 z, 4 X, .5 X, .4 z,.3

x 23 Aggregation is sum

y 2 |3 |4 |2 X, .4 z,.5 y, .4 y, .2 Computing Top 1

TA

Random Access Table A B C D Cache Threshold
w 9 9 9 A w, .9 w, .9 w, .9 X, .9 w 2.8 3.7
X 4 5 4 9 z, 4 X, .5 X, .4 z,.3

x 23 Aggregation is sum

y 2 |3 |4 |2 X, .4 z,.5 y, .4 y, .2 Computing Top 1

TA

Random Access Table A B C D Cache Threshold
w 9 9 9 A w, .9 w, .9 w, .9 X, .9 w 2.8 21
X 4 5 4 9 z, 4 X, .5 X, .4 z, .3 _ _
x 23 Aggregation is sum
y |2 |3 4 2 X, .4 z,.5 y, .4 Y, .2 Computing Top 1
z 4 5 2 3 y, .2 Yy, .3 z, .2 w, .1 z 1.4

Stop! Value of w > threshold

