
Inconsistency-Driven Information Sharing
in Peer Data Exchange Systems

Leopoldo Bertossi

Carleton University
Ottawa, Canada

Join work with: Loreto Bravo
Universidad de Concepcion, Chile

2

Some Forms of Data Integration

There are different approaches and paradigms for data integra-
tion, e.g.

• Materialized: Physical repository is created

• Mediated: Data stay at the sources, a virtual integration
system is created

• Data Exchange: Data is exported from one system to an-
other

• Peer-to-Peer Data Exchange: Many peers exchange data
without a central control mechanism

Peer Data Management Systems ...

3

Mediator-Based Data Integration

1

3 3 3
2

2 2

4

m ediator

data sources

A virtual database is created which is accessed via a mediator

Queries are posed and answered via the mediator

Which are the correct answers?

4

The semantics is given in terms of a collection of legal and
intended instances over the global schema: A possible world
semantics

It takes into account mappings between global and local schemas

What is true of the system is what is true of all those instances,
in particular, query answers

Mediator

Sources

legal potential
global instances a “possible worlds”

semantics

5

Peer Data Exchange Systems

Each peer has a local and au-
tonomous database

Data at two different peers
may be related by data ex-
change constraints (DECs)
(schema mappings)

Local queries are posed to individual peers

Peers exchange data when they answer their queries

Exchange of data depends on: The query, the DECs, the data
at the relevant peers, local ICs, and trust relationships between
peers

6

A peer does not update its physical instance according to its
DECs and other peers’ instances

However, if a peer P is answering a (local) query QP, it may, at
query time:

• Import data from other peers to complement its data

• Ignore part of its own data

This depending upon its own DECs, local ICs, and neighboring
peers’ data

But also upon the trust relationships that P has with its neigh-
bors

We assume that peers have disjoint schemas

7

Example: Peers in a systems P, their schemas, instances, DECs,
trust relationships:

DECs:

Σ(P1, P2)= {∀x∀y(R2(x, y)→ R1(x, y))}
Σ(P2, P3)= {∀x∀y(R2(x, y) ∧R3(x, y)→ false)}
Σ(P4, P2)= {∀x∀y∀z(R2(x, y) ∧ S2(y, z)→ R4(x, y, z))}
Σ(P4, P3)= {∀x∀y(R3(x, y)→ ∃zR4(x, y, z))}

8

Our Motivation and Results

• Develop a a formal semantics for PDESs where peers exchange
data for query answering

• Use the semantics to characterize the intended and correct
answers to a query posed to and answered by a peer

• We propose a model-theoretic semantics

That is, a collection of possible and admissible models over
which the system is interpreted

• The expected answers from a peer to a query are those that
are certain; wrt its intended instances

• The semantics can be declarative specified and made exe-
cutable via logic programs with stable model semantics

9

General Remarks

• A peer data exchange system (PDES) can be seen as a set
of information agents

• Each of them being the owner of a data source

• Each peer P can be seen as an ontology consisting of:

• the database instance

• metadata describing the database schema R(P) and local
integrity constraints (ICs)

• its set Σ(P) =
⋃

P’∈P Σ(P, P’) of DECs, and

• its trust relationships

10

• These ontologies may be pairwise inconsistent due to the
DECs and the database facts

It is easy to extend our framework to handle DECs that contain
views, i.e. defined relational predicates

• This kind of consistency issues also emerge when aligning
ontologies

• Our notion of DEC largely extends the inclusions of concepts
in the ontological scenario

Our DECs can be much more general than inclusions

• In our case, we do not make the ontologies mutually consistent

Whenever possible, inconsistencies are solved at query time

11

The Idea: “Operational” Semantics

When a peer P receives a query:

• P sends queries to its neighbors, to get data and check the
satisfaction of its DECs

This can be made relative to the specific query at hand
(relevance of DECs to the query)

• If they are not satisfied, P tries to restore satisfaction of
(consistency wrt) its DECs

– A repair, that satisfies the DECs, respects the trust re-
lationships and is “as close as possible” to P’s original
data is called a solution for P

12

• There might be several solutions

– Peer P returns as query answers those that are certain,
i.e. true in all of P’s solutions

– These are the peer consistent answers (PCAs) from P

• What did P receive from a neighbor P’?

The answers by P’ to the queries from P are also true in all
solutions for P’

The same idea/process has to be applied to P’s neighbors,
and so on ...

Peers pass (locally) certain data to other neighboring peers

13

Example: DECs:

Σ(P1, P2)= {∀x∀y(R2(x, y)→ R1(x, y))}
Σ(P2, P3)= {∀x∀y(R2(x, y) ∧ R3(x, y)→ false)}
Σ(P4, P2)= {∀x∀y∀z(R2(x, y) ∧ S2(y, z)→

R4(x, y, z))}

⎫⎪⎬
⎪⎭ Univ. DECs

Σ(P4, P3)= {∀x∀y(R3(x, y)→ ∃zR4(x, y, z))} } Ref. DEC

14

Σ(P1, P2)= {∀x∀y(R2(x, y)→ R1(x, y))}
Σ(P2, P3)= {∀x∀y(R2(x, y) ∧R3(x, y)→ false)}
Σ(P4, P2)= {∀x∀y∀z(R2(x, y) ∧ S2(y, z)→

R4(x, y, z))}
Σ(P4, P3)= {∀x∀y(R3(x, y)→ ∃zR4(x, y, z))}

Peer P4 will have no effect on the query!

15

Σ(P1, P2)= {∀x∀y(R2(x, y)→ R1(x, y))}
Σ(P2, P3)= {∀x∀y(R2(x, y) ∧R3(x, y)→ false)}

(a denial DEC)

16

Σ(P1, P2)= {∀x∀y(R2(x, y)→ R1(x, y))}
Σ(P2, P3)= {∀x∀y(R2(x, y) ∧R3(x, y)→ false)}

17

Σ(P1, P2)= {∀x∀y(R2(x, y)→ R1(x, y))}
Σ(P2, P3)= {∀x∀y(R2(x, y) ∧R3(x, y)→ false)}

18

Σ(P1, P2)= {∀x∀y(R2(x, y)→ R1(x, y))}
Σ(P2, P3)= {∀x∀y(R2(x, y) ∧R3(x, y)→ false)}

Peer consistent answers from P1: (a, 2) and (d, 5)

19

In this example, a peer passes a complete certain instance back
to a neighbor, e.g. P2 to P1

This may be more than what P1 needs to answer the original
query, e.g. P1 does not need S2 from P2

Just to show the issues behind the semantics, and of each peer
in particular

Each peer will have a set of local solution instances, and this
set is not determined by a particular query

In terms of data movement, many things can be optimized wrt
the example

20

Example:

Σ(P1, P2)= {∀x∀y(R2(x, y)→ R1(x, y))}
Σ(P2, P3)= {∀x∀y(R2(x, y) ∧R3(x, y)→ false)}
Σ(P4, P2)= {∀x∀y∀z(R2(x, y) ∧ S2(y, z)→ R4(x, y, z))}
Σ(P4, P3)= {∀x∀y(R3(x, y)→ ∃zR4(x, y, z))}

21

We are left with:

Σ(P2, P3)= {∀x∀y(R2(x, y) ∧R3(x, y)→ false)}
Σ(P4, P2)= {∀x∀y∀z(R2(x, y) ∧ S2(y, z)→ R4(x, y, z))}
Σ(P4, P3)= {∀x∀y(R3(x, y)→ ∃zR4(x, y, z))}

22

Σ(P2, P3)= {∀x∀y(R2(x, y) ∧R3(x, y)→ false)}
Σ(P4, P2)= {∀x∀y∀z(R2(x, y) ∧ S2(y, z)→ R4(x, y, z))}
Σ(P4, P3)= {∀x∀y(R3(x, y)→ ∃zR4(x, y, z))}

23

Σ(P2, P3)= {∀x∀y(R2(x, y) ∧R3(x, y)→ false)}
Σ(P4, P2)= {∀x∀y∀z(R2(x, y) ∧ S2(y, z)→ R4(x, y, z))}
Σ(P4, P3)= {∀x∀y(R3(x, y)→ ∃zR4(x, y, z))}

24

Σ(P2, P3)= {∀x∀y(R2(x, y) ∧R3(x, y)→ false)}
Σ(P4, P2)= {∀x∀y∀z(R2(x, y) ∧ S2(y, z)→ R4(x, y, z))}
Σ(P4, P3)= {∀x∀y(R3(x, y)→ ∃zR4(x, y, z))}

PCAs from P4: (d, 5, 1) and (c, 4,null)

25

Our Framework

Our data exchange constraints (DECs):

• Universal data exchange constraint (UDEC) between P1,
P2:

∀x̄(
n∧

i=1

Ri(x̄i) −→ (
m∨
j=1

Qj(ȳj) ∨ ϕ))

Ri, Qj ∈ R(P1) ∪R(P2), and ϕ a disjunction of built-ins

We can have a predicates of both peers on both sides of
implication

• Referential data exchange constraint (RDEC) between peers
P1, P2:

∀x̄(R(x̄) −→ ∃ȳ Q(x̄′, ȳ))

R,Q ∈ R(P1) ∪R(P2), and x̄′ ⊆ x̄
(conjunctions can be added)

26

• Incomplete information is represented by means of nulls

Actually, they follow a FO semantics that is a “logical recon-
struction” of IC satisfaction with nulls in the SQL Standard
(Bravo, Bertossi; IIDB 2006)

• The reason for not having joins in the consequents

This restriction can be lifted if labeled nulls or constants are
used instead

Other semantics for incomplete databases (and null values) could
be easily adopted in our framework

Being able to introduce more complex DECs

• It is also possible to impose local ICs on peers’ instances

They can be uniformly handled as before by means of DECs of
the form Σ(P, P) and an =-trust relationship

27

The Semantics

We define the solution instances of a peer; in two steps:

1. First locally for a peer and its neighbors: Neighborhood
solutions

2. Using 1., recursively consider transitive relations to other
peers

Start from a peer P with local instance D(P)

Can be seen as extended as an instance D for neighborhood
N(P), over the union schema

D may not satisfy the DECs from P to its neighbors, and incon-
sistencies have to be solved, minimally ...

28

. .
. ..
.

D(P)D D’

neighborhood
solution.

Let D′ be an instance for N(P)
D′ is a neighborhood solution for P and D:

1. D′ satisfies the DECs and local constraints of P

D′ |= ⋃
P′∈N(P) Σ(P, P

′)

2. The data in D′ associated to the peers that P trusts more
than itself is the same as the one in D

3. There is no instance D′′ that satisfies 1. and 2. and is
“closer” to D than D′

29

Distance can be defined in different ways: Ours

• Changes are minimal under set inclusion of sets of tuples
(Arenas, Bertossi, Chomicki, PODS 1999), and

• Referential DECs are repaired by insertions of a single null ,
as in (Bravo, Bertossi; IIDB 2006)

The repair semantics takes null into account

There may be more than one neighborhood solution D′

30

.

.

.

.
.P2

D(P)D D’

neighborhood
solutionP1

.
P4

P3

Sol(P4)

Sol(P1)

Now we define the solution instances (solutions) for P

Now consider transitive relationships too

Transitive peers will contribute to the creation of the D above;
which will lead to the D′s, etc.

Peers will be passing back the intersection of their own solutions

Transitive peers will contribute to D with the intersection of
their own solutions, iteratively/recursively ...

31

Let D(P) be the database instance for peer P

A solution for P can be recursively defined as:

• If P has no DECs, then the solution is D(P)

• Otherwise:

1. Let D be a database instance that is the union of
D(P), and, for each neighbor, the intersection of its
solutions:

D = D(P) ∪ ⋃
P′∈N (P)

P′ �=P

⋂
Sol(P′)

(an instance for the union schema around P)

2. Let D′ be a neighborhood solution for P and D

Then, D′ restricted to the schema of P is a solution for P

32

For this definition to work, we restrict ourselves to acyclic peer
data exchange systems, i.e. graphs of neighbors is acyclic (not
necessarily the DECs)

We also want to avoid the following:

P3 needs the intersection of P1’s solutions ⇒ P1 needs the
intersection of P2’s solutions ⇒ P2 needs the intersection of
P3’s solutions ⇒ · · ·
Cycles can be detected by using a query identifier that is prop-
agated as an annotation and detected

33

It might be the case that a peer has no solution:

DECs:

Σ(P2, P1)= {∀x∀y(R1(x, y)→ R2(x, y))}
Σ(P2, P3)= {∀x∀y(R2(x, y) ∧R3(x, y)→ false)}
Peer P2 trusts P1 and P3 more than itself, but both provide
contradictory information

34

First-order query Q(x̄) ∈ L(P) posed to peer P:

The ground tuple t̄ is a peer consistent answer to Q from
P iff D′ |= Q[t̄] for every D′ ∈ Sol(P)

Peer consistent query answering is decidable

This relies on our null-based repair semantics

Even with acyclic neighbors’ graph it be undecidable depending
on interaction between DECs if arbitrary constants are used

Theorem: Given a peer P and, for each peer, the intersections
of its solutions, deciding if a tuple is a peer consistent answer
from P to a FO query is ΠP

2 -complete

35

Logic Programs for Peers’ Solutions

• Answer set programs have been used to specify and compute
repairs of databases that are inconsistent wrt ICs
(Barcelo, Bertossi; PADL’03), (Barcelo, Bertossi, Bravo; LNCS 2582)

• Those programs can be adapted to our framework, and there
is a one-to-one correspondence between their answer sets (stable
models) and the solutions of peer

• The trust relationships, DECs and local ICs have to be
taken into consideration

• They provide a compact representation of the class of solu-
tions and the possibility of reasoning about that class

36

• The program uses annotation constants to indicate the atoms
that may virtually inserted or deleted in order to restore consis-
tency:

Annotation Atom The tuple P (ā) is ...

t P (ā, t) made true (inserted)
f P (ā, f) made false (deleted)

t� P (ā, t�) true or becomes true
f� P (ā, f�) false or becomes false

t�� P (ā, t��) true in the solution

All of them needed if there are interacting DECs for a peer; and
several repair steps become necessary

37

Example:

Σ(P1, P2)= {∀x∀y(R2(x, y)→ R1(x, y))}
Σ(P2, P3)= {∀x∀y(R2(x, y) ∧R3(x, y)→ false)}

• Peer P3 has no DECs, therefore its only solution is D(P3)

38

Σ(P1, P2)= {∀x∀y(R2(x, y)→ R1(x, y))}
Σ(P2, P3)= {∀x∀y(R2(x, y) ∧R3(x, y)→ false)}

• To find the solution of peer P2 we can use its solution
program!

dom(a). dom(c). . . .
R3(c, 4) R2(c, 4) R2(d, 5) S2(4, 2)
R3(x, y, f) ∨R2(x, y, f)← R2(x, y, t�), R3(x, y, t�), x �= null , y �= null .
R3(x, y, t�)← R3(x, y, t).
R3(x, y, t�)← R3(x, y).
R3(x, y, f�)← R3(x, y, f).
R3(x, y, f�)← dom(x), dom(y), not R3(x, y).
R2(x, y, t��)← R2(x, y, t�), not R2(x, y, f).
← R3(x, y, t), R3(x, y, f).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(Similarly for R2)

39
dom(a). dom(c). . . .
R3(c, 4) R2(c, 4) R2(d, 5) S2(4, 2)
R3(x, y, f) ∨R2(x, y, f)← R2(x, y, t�), R3(x, y, t�), x �= null , y �= null .
R3(x, y, t�)← R3(x, y, t).
R3(x, y, t�)← R3(x, y).
R3(x, y, f�)← R3(x, y, f).
R3(x, y, f�)← dom(x), dom(y), not R3(x, y).
R2(x, y, t��)← R2(x, y, t�), not R2(x, y, f).
← R3(x, y, t), R3(x, y, f).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(Similarly for R2)

• This program has two answer sets

• Collecting atoms t�� we get (neighborhood) solutions:

D1 :

R2

d 5

S2

4 2

R3

c 4

D2 :

R2

c 4
d 5

S2

4 2

R3

⋂
?: Just skeptical query answering: Ans(x, y)← R2(x, y, t��)

40

Σ(P1, P2)= {∀x∀y(R2(x, y)→ R1(x, y))}
Σ(P2, P3)= {∀x∀y(R2(x, y) ∧R3(x, y)→ false)}

• To find the solution of peer P1 we can use its solution
program!

dom(a). dom(c). . . .
R1(a, 2) R2(d, 5) S2(4, 2)
R1(x, y, t)← R2(x, y, t�), R1(x, y, f�), x �= null , y �= null .
R1(x, y, t�)← R1(x, y, t).
R1(x, y, t�)← R1(x, y).
R1(x, y, f�)← R1(x, y, f).
R1(x, y, f�)← dom(x), dom(y), not R1(x, y).
R1(x, y, t��)← R1(x, y, t�), not R1(x, y, f).
← R1(x, y, t), R1(x, y, f).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(Similarly for R2)

41

• This program has one answer set; then one neighbor solu-
tion

• Collecting atoms with t�� we get this (neighborhood) so-
lution:

D1 :
R1

a 2
d 5

R2

d 5
S2

4 2

• The query R1(x, y)? can also be added to the answer set
program:

Ans(x, y)← R1(x, y, t��)

• Final PCAs are obtained: {Ans(a, 2), Ans(d, 5)}

42

Example:
Σ(P1, P2) = {∀xy (R2(x, y) → ∃z R1(x, z))}
IC (P1) = {∀xyz (R1(x, y) ∧ R1(x, z) → y = z)}

dom(a). dom(b). . . . R1(a,null). R1(s, t). R2(c, d). R2(a, e).
R1(x,null , t)← R2(x, t�), not aux (x), x �= null .
aux(x)← R1(x,null), not R1(x, null , f).
aux(x)← R1(x, y, t�), not R1(x, y, f), x �= null , y �= null .
R1(x, y, f) ∨R1(x, z, f)← R1(x, y, t�), R1(x, z, t�), x �= null , y �= z.

The solution with the program is:
R1

s t
a null
c null

43

A Note of Referential DECs

• A set of DECs and ICs for a peer is Ref-Acyclic if there is no
cycles through referential DECs or ICs

• An example of ref-acyclic

Σ(P1, P2) = {∀xy (R1(x, y) → R2(x, y)),
∀xy(R2(x, y) → R1(x, y))}

Σ(P2, P1) = {∀x(S2(x) → ∃yS1(x, y))}

• An example of non-ref-acyclic

Σ(P1, P2) = {∀xy (R1(x, y) → ∃z R2(x, z)),
∀xy (R2(x, y) → R1(x, y))}

Theorem: For a ref-acyclic set of DECs and ICs for a peer,
there is a one-to-one correspondence between answer sets and
the neighborhood solutions of the peer

44

A Special Case and Common Case

• Unrestricted Import Case:

– The DECs are such that data is only imported to the
peer (nothing is deleted)

– All peers trust other peers more than themselves

– There are no local ICs

• Nice properties:

– A unique solution always exist

– The solution program can be replaced by a non-disjunctive
program

– The solution can be computed in polynomial time

45

Optimizations and Relaxing Conditions

• It is possible to relax the conditions of ref-acyclicity and
acyclicity of the neighbors’ graph:

• A sensible semantics can be provided

• Correct and complete solution-programs can be given

For example when:

• The cycles in the graph are not relevant to the query

• Even if the DECs and ICs are not ref-acyclic, depending on
the interaction with the trust relationships, the solution-
program can provide exactly the set of solutions

• Instead of requesting all the data of the neighboring sources:

• restrict to the data that is relevant to check the DECs that
have an impact on a query

46

Related Work

(Calvanese et al.; DBISP2P 2003, DBPL 2005, PODS 2004),

(Franconi et al.; P2P&DB 2004)

• Based on epistemic logic

• DECs are of the form: cqi → cqj where cqi and cqj are
conjunctive queries over Pi and Pj’s schemas, resp.

• No trust relationships

– Implicitly: peers trust themselves less than other peers

• Local ICs violations are avoided

– A peer that is inconsistent wrt its local ICs is ignored

– New atoms are added into a peer by interaction with
other peers only if this does not produce a local IC
violation

47

• GAV Local Mappings:

∀xyz(S1
s (x, y, z)→ S1(x, y, z))

∀xyz(R2
s(x, y) ∧R2

s(y, z)→ R2(x, y, z))

∀xyz(R3
s(x, y, z)→ R3(x, y, z))

• DECs:

∀xy(R2(x, y, z)→ ∃wR1(x, y, w))

∀xy(R3(x, y, y)→ ∃uvR3(u, x, v))

48

If peer P1 receives a query, it will need the following theory
in epistemic logic:

K1(∀xyz(S1
s (x, y, z) → S1(x, y, z)))

∀xy(K2(R
2(x, y, z)) → K1(∃wR1(x, y,w)))

}
Specification of P1

K2(∀xyz(R2
s(x, y) ∧R2

s(y, z) → R2(x, y, z)))
∀xy(K3(R

3(x, y, y)) → K2(∃uvR3(u, x, v)))}
}

Specification of P2

K3(∀xyz(R3
s(x, y, z) → R3(x, y, z))) } Specification of P3

Kiϕ can be interpreted as ϕ is known by peer Pi

“Known” data is passed to other peers

A tuple t̄ is a peer consistent answer to a query Q posed to peer
Pi if KiQ(t̄) is a logical consequence of the epistemic theory

49

• Pros: semantics can be applied in the presence of cycles

• Cons: requires (possible massive and complex) reasoning by
peer P1

• Requires data, mappings and DECs not only of neighbors,
but of all accessible peers

Our approach can be easily adapted so that each peer is a local
data integration system

50

Conclusions

• We have provided a semantics for peer data exchange systems

• Respects the modularity and independence of the different
peers

• Takes trust relationships into consideration

• Uses null to repair referential DECs and ICs considering the
same semantics of satisfaction of constraints as commercial
DBMSs

• We can say that data movement is triggered by query answer-
ing, driven by inconsistency, but guided by trust relationships

Interesting Research: More complex trust relationships, declar-
atively specified, and to be logically integrated with DECs

51

• We have provided answer set programs that can be used to
specify solutions for a peer and compute PCAs

• Each peer has a single and fixed facts-free logic program, for
all queries

Only facts depend on query and other peers’ data

