
November 8, 2013 Database Seminar, U Washington

Factorized Relational Databases
http://www.cs.ox.ac.uk/projects/FDB/

Olteanu and Závodný, University of Oxford

http://www.cs.ox.ac.uk/projects/FDB/

Factorized Representations of Relations

Cust
ckey name
1 Joe
2 Dan
3 Li
4 Mo

Ord
ckey okey date
1 1 1995
1 2 1996
2 3 1994
2 4 1993
3 5 1995
3 6 1996

Item
okey disc
1 0.1
1 0.2
3 0.4
3 0.1
4 0.4
5 0.1

Consider a query Q joining the three relations above:

Q(ckey, name, okey, date, disc)←
Cust(ckey, name),Ord(ckey, okey, date), Item(okey, disc)

Q
ckey name okey date disc
1 Joe 1 1995 0.1
1 Joe 1 1995 0.2
2 Dan 3 1994 0.4
2 Dan 3 1994 0.1
2 Dan 4 1993 0.4
3 Li 5 1995 0.1

Factorized Representations of Relations

Q

ckey name okey date disc
1 Joe 1 1995 0.1
1 Joe 1 1995 0.2
2 Dan 3 1994 0.4
2 Dan 3 1994 0.1
2 Dan 4 1993 0.4
3 Li 5 1995 0.1

A flat relational algebra expression of the query result is:

〈1〉 × 〈Joe〉 × 〈1〉 × 〈1995〉 × 〈0.1〉 ∪

〈1〉 × 〈Joe〉 × 〈1〉 × 〈1995〉 × 〈0.2〉 ∪

〈2〉 × 〈Dan〉 × 〈3〉 × 〈1994〉 × 〈0.4〉 ∪

〈2〉 × 〈Dan〉 × 〈3〉 × 〈1994〉 × 〈0.1〉 ∪

〈2〉 × 〈Dan〉 × 〈4〉 × 〈1993〉 × 〈0.4〉 ∪

〈3〉 × 〈Li〉 × 〈5〉 × 〈1995〉 × 〈0.1〉

It uses relational product (×), union (∪), and unary relations (e.g., 〈1〉).

Factorized Representations of Relations

〈1〉 × 〈Joe〉 × 〈1〉 × 〈1995〉 × 〈0.1〉 ∪

〈1〉 × 〈Joe〉 × 〈1〉 × 〈1995〉 × 〈0.2〉 ∪

〈2〉 × 〈Dan〉 × 〈3〉 × 〈1994〉 × 〈0.4〉 ∪

〈2〉 × 〈Dan〉 × 〈3〉 × 〈1994〉 × 〈0.1〉 ∪

〈2〉 × 〈Dan〉 × 〈4〉 × 〈1993〉 × 〈0.4〉 ∪

〈3〉 × 〈Li〉 × 〈5〉 × 〈1995〉 × 〈0.1〉

A factorized representation of the query result is:

〈1〉 × 〈Joe〉 × 〈1〉 × 〈1995〉 × (〈0.1〉 ∪ 〈0.2〉)∪

〈2〉 × 〈Dan〉 × (〈3〉 × 〈1994〉 × (〈0.4〉 ∪ 〈0.1〉) ∪ 〈4〉 × 〈1993〉 × 〈0.4〉)∪

〈3〉 × 〈Li〉 × 〈5〉 × 〈1995〉 × 〈0.1〉

There are several algebraically equivalent factorized representations defined by
distributivity of product over union and commutativity of product and union.

Factorized Representations of Relations

〈1〉 × 〈Joe〉 × 〈1〉 × 〈1995〉 × (〈0.1〉 ∪ 〈0.2〉)∪

〈2〉 × 〈Dan〉 × (〈3〉 × 〈1994〉 × (〈0.4〉 ∪ 〈0.1〉) ∪ 〈4〉 × 〈1993〉 × 〈0.4〉)∪

〈3〉 × 〈Li〉 × 〈5〉 × 〈1995〉 × 〈0.1〉

Compactly encode combinations of groups of values.

Can be exponentially more succinct than the relations they encode.

Use a mixture of vertical (product) and horizontal data partitioning (union).

Allow for constant-delay enumeration of tuples.

Unlike general join decompositions and the trivial representation (Q,D).

Boost query performance.

Queries can be evaluated on factorized data (unlike for general compression).

Spot the Factorized Database!

F1: A Distributed SQL Database That Scales. PVLDB’13.
Google’s DB supporting their lucrative AdWords business

Uses factorization of input database to increase data locality for common
access patterns

◮ DB tables pre-joined following an f-tree defined by key-foreign key constraints.

Data partitioned across servers into factorization fragments.

Spot the Factorized Database!

Name:

Marital Status:

Social Security Number:

Name:

Marital Status:

Social Security Number:

(1) single (2) married

(3) divorced (4) widowed

(1) single (2) married

(3) divorced (4) widowed

t1.S t1.N t1.M t2.S t2.N t2.M

185 Smith 1 186 Brown 1

185 Smith 1 186 Brown 2

185 Smith 1 186 Brown 3

185 Smith 1 186 Brown 4

185 Smith 2 186 Brown 1

185 Smith 2 186 Brown 2

185 Smith 2 186 Brown 3

185 Smith 2 186 Brown 4

.

.

.

785 Smith 2 186 Brown 4

Fig. 1. Two completed survey forms and a world-set relation representing the

possible worlds with unique social security numbers.

t1.S t2.S

185 186

785 185

785 186

×

t1.N

Smith
×

t1.M

1

2

×

t2.N

Brown
×

t2.M

1

2

3

4

1010
6

Worlds and Beyond: Efficient Representation and Processing of Incomplete

Information. ICDE’07.

Managing a large set of possibilities or choices

Configuration problems (space of valid solutions)

Incomplete information (space of possible worlds)

Spot the Factorized Database!

98 5. INTENSIONAL QUERY EVALUATION

5.1.3 READ-ONCE FORMULAS

An important class of propositional formulas that play a special role in probabilistic databases are

read-once formulas. We restrict our discussion to the case when all random variables X are Boolean

variables.

! is called read-once if there is a formula !
′ equivalent to ! such that every variable occurs

at most once in !
′. For example:

! =X1Y1 ∨ X1Y2 ∨ X2Y3 ∨ X2Y4 ∨ X2Y5

is read-once because it is equivalent to the following formula:

!
′
=X1(Y1 ∨ Y2) ∨ X2(Y3 ∨ Y4 ∨ Y5)

Probabilistic Databases. Morgan & Claypool. 2011.

Provenance and probabilistic data

Compact encoding for large provenance

Factorization of provenance is used for efficient query evaluation
in probabilistic databases.

Spot the Factorized Database!

!
!
!
"
"
"
"

"
"
"
!
!
"
"

"
"
"
"
"
!
!

!
"
"
"
"
!
"

"
!
"
"
"
"
"

"
"
!
!
"
"
!

"
"
"
"
!
"
"

!
!#
!$
#
%&
$
$

!
!
!
"
"
"
"

"
"
"
!
!
!
!

%"
%"
%"
#$
#$
#'
#'

($
"
($
($
"
($
($

($
($
"
"
"
($
"

"
($
"
"
"
"
"

"
"
($
($
!
"
($

"
"
"
"
"
(%
(%

"
"
"
"
"
(%
(%

($
($
($
($
($
"
"

"
"
"
($
($
(%
(%

($
($
($
"
"
"
"

(%
(%
(%
"
"
($
($

(%
(%
(%
"
"
"
"

(%
(%
(%
($
($
($
($

"
"
"
($
($
"
"

!
"
"

"
!
"

"
"
!

!
"
"

"
!
!

%"
#$
#'

"
"
(%

"
"
(%

($
($
"

"
($
(%

($
"
"

(%
"
($

(%
"
"

(%
($
($

"
($
"

!
"
"
"

"
!
"
"

"
"
!
"

"
"
"
!

($
"
($
"

($
($
"
"

"
($
"
"

"
"
($
!

!
!#
!$
#
%&
$

)*!

!
!
!
#
#
%
%

)*#

!
#
%
%
+
!
%

)*%

!
#
%
+
$
,
,

-*!

!"#$%&"'('()$*"+"$'($,-./&'0$12&."+$!!"#$%&'()*+$,#

!3#$45206$7+&-0+-&/$8/9&/:/(+"+'2($2;$*/:')($<"+&'=

- ... /

0*#

/*!

-*#
-*%

0*!

0

...

/*#

...

/

...

/*%...

0*%

$
%
!
+
$
!
$

1

$
%
!
+
$
!
$

1

Figure 3: (a) In relational domains, design matrices X have large blocks of repeating patterns (example from
Figure 2). (b) Repeating patterns in X can be formalized by a block notation (see section 2.3) which stems
directly from the relational structure of the original data. Machine learning methods have to make use of
repeating patterns in X to scale to large relational datasets.

Scaling Factorization Machines to Relational Data. PVLDB’13.
feature vectors for predictive modelling represented as very large design
matrices (= relations with high cardinality).

standard learning algorithms cannot scale on design matrix representation

use repeating patterns in the design matrix as key to scalability

Key Challenges

1. How compact can factorized query results be?

2. Can such factorizations speed up query evaluation?

Key Results

1. How compact can factorized query results be?

Asymptotic size bounds for factorizations of query results.

Characterize queries based on succinctness of their factorized results.

2. Can such factorizations speed up query evaluation?

FDB: a main-memory query engine for factorized relational databases.

Compute factorizations directly from query and input data.

Factorization Trees

Nesting structure of a factorization.

A factorization tree (f-tree) T over relational schema S is a rooted forest with

nodes labelled by attributes from S.

Examples for a relation R over schema S = {A,B ,C}:

A

B C

←→
⋃

a∈A

(

〈a〉 ×
(

⋃

b∈B

〈b〉
)

× (
⋃

c∈C

〈c〉
))

.

A

B

C

←→
⋃

a∈A

(

〈a〉 ×
(

⋃

b∈B

〈b〉 ×
(

⋃

c∈C

〈c〉
)))

.

Factorization Trees for Relations

However, not all f-trees work for all relations.

The f-tree
A

B C

cannot factorize the relation R

R

A B C
1 1 1
1 2 2

because for A = 1, the values of B and C are dependent:

R cannot be factorized as 〈1〉 × (
⋃

b∈B

〈b〉)× (
⋃

c∈C

〈c〉).

〈1〉 × 〈1〉 ∪ 〈2〉 × 〈2〉 6= (〈1〉 ∪ 〈2〉)× (〈1〉 ∪ 〈2〉)

Factorization Trees for Relations

Join results have (conditionally) independent attributes.

studied under the topic of join dependencies.

For instance, the f-tree
A

B C

always factorizes the result of the join R(A,B), S(A,C).

Factorization Trees for Query Results

For any conjunctive query Q,

we characterize f-trees that always factorize the result of Q.

If Q is an equi-join query and T any f-tree, then

the result Q(D) can be factorized according to T for any database D

iff

for each relation of Q, all its attributes are on a root-to-leaf path.

If Q has projections, a similar but more complicated result holds.

Factorization Trees for Query Results

Consider the query:

Q(A,B ,C ,D,E ,F)← R(A,B ,C), S(A,B ,D),T (A,E),U(E ,F).

A

B

C D

E

F

E

A

B

C D

F

Left f-tree induces the factorization structure:

⋃

a∈A

(

〈a〉 ×
⋃

b∈B

(

〈b〉 ×
(

⋃

c∈C

〈c〉
)

×
(

⋃

d∈D

〈d〉
))

×
⋃

e∈E

(

〈e〉 ×
(

⋃

f∈F

〈f 〉
))

)

Challenge 1: Succinctness Characterization

Size of Factorized Representations

The size of a factorization is the number of its singleton data elements.

∣

∣

(

〈1〉 ∪ 〈2〉 ∪ 〈3〉
)

×
(

〈1〉 ∪ 〈2〉
)∣

∣ = 5,
∣

∣

(

〈1〉〈1〉 ∪ 〈1〉〈2〉 ∪ 〈2〉〈1〉 ∪ 〈2〉〈2〉 ∪ 〈3〉〈1〉 ∪ 〈3〉〈2〉
)∣

∣ = 12.

How much space do we save by factorization?

Size of Factorized Representations: Characterization

For any conjunctive query Q there is a number s(Q) such that

For any database D, Q(D) admits a factorization of size O(|D|s(Q)).

Best possible bound for factorizations whose nesting structures (i.e.,
f-trees) are inferred from Q, without looking at D.

There exists D such that all factorizations over f-trees are Ω(|D|s(Q)).

Size of Factorized Representations: Characterization

For any conjunctive query Q there is a number s(Q) such that

For any database D, Q(D) admits a factorization of size O(|D|s(Q)).

Best possible bound for factorizations whose nesting structures (i.e.,
f-trees) are inferred from Q, without looking at D.

There exists D such that all factorizations over f-trees are Ω(|D|s(Q)).

Worst-case optimality also for computing the factorization in case of queries
without projections.

Instance-optimal factorization of relations (i.e., dependent on D) is hard.

◮ progress so far: consider functional dependencies, sizes of relations, efficient
heuristics that do not require guiding f-trees.

Sizes: Flat vs. Factorized Query Results

For any database D, |Q(D)| is O(|D|ρ
∗(Q)). [AGM’08]

For any database D, Q(D) admits factorization of size O(|D|s(Q)). [OZ’11]

1 ≤ s(Q) ≤ ρ∗(Q) ≤ |Q|

There are classes of queries with s(Q)≪ ρ∗(Q).

Intuition for Asymptotic Bounds

For any database D, |Q(D)| is O(|D|ρ
∗(Q)). [AGM’08]

For any database D, Q(D) admits factorization of size O(|D|s(Q)). [OZ’11]

What are ρ
∗(Q) and s(Q)?

Intuition – Edge Covers

Q(A,B ,C ,D,E ,F)← R(A,B ,C), S(A,B ,D),T (A,E),U(E ,F).

The hypergraph of Q:

A

B

C D

E

FR S

T

U

First observation:
Cover all attributes by k relations ⇒ |Q(D)| ≤ |D|k .

Set of m independent attributes ⇒ construct D with |Q(D)| ∼ |D|m.

maxm = IndependentSet(Q) ≤ EdgeCover(Q) = mink

Intuition – Fractional Edge Covers

Q(A,B ,C ,D,E ,F)← R(A,B ,C), S(A,B ,D),T (A,E),U(E ,F).

The hypergraph of Q:

A

B

C D

E

FR S

T

U

[AGM’08]:
Fractional edge cover of Q with weight k ⇒ |Q(D)| ≤ |D|k .

Fractional independent set of weight m ⇒ construct D with |Q(D)| ∼ |D|m.

By linear programming duality:

maxm = FractionalIndependentSet(Q) = FractionalEdgeCover(Q) = mink

Example

Q(A,B ,C ,D,E ,F)← R(A,B ,C), S(A,B ,D),T (A,E),U(E ,F).

A

B

C D

E

FR S

T

U

Relations R , S ,U cover the whole query.
FractionalEdgeCover(Q) ≤ 3

Each of the nodes C , D, and F must be covered by separate relations.
FractionalIndependentSet(Q) ≥ 3

⇒ ρ∗(Q) = 3

⇒ |Q(D)| = O(|D|3) and for some inputs |Q(D)| = Θ(|D|3).

Intuition – Size of Factorizations

A

B

C D

E

F

⋃

a∈A

(

〈a〉 ×
⋃

b∈B

(

〈b〉 ×
(

⋃

c∈C

〈c〉
)

×
(

⋃

d∈D

〈d〉
)

)

×
⋃

e∈E

(

〈e〉 ×
(

⋃

f∈F

〈f 〉
)

))

Attributes only depend on their ancestor attributes in the f-tree

F only depends on E and A.

One 〈f 〉 for each (a, e, f) ∈ Q(D).

The number of F -singletons is |πA,E ,F (Q(D))|.

Size of factorization = sum of sizes of results of subqueries along paths.

Example

Q(A,B ,C ,D,E ,F)← R(A,B ,C), S(A,B ,D),T (A,E),U(E ,F).

A

B

C D

E

FR S

T

U

Path A,E ,F has fractional edge cover 2.
⇒ The number of F -singletons is ≤ |D|2, but can be ∼ |D|2.

All other root-to-leaf paths have fractional edge cover 1.
⇒ The number of other singletons is ≤ |D|.

s(Q) = 2 ⇒ Factorization size ∼ |D|2

Recall that ρ∗(Q) = 3 ⇒ Flat size ∼ |D|3

Size: Flat vs. Factorized Query Results

For any database D, |Q(D)| is O(|D|ρ
∗(Q)). [AGM’08]

For any database D, Q(D) admits factorization of size O(|D|s(Q)). [OZ’11]

ρ∗(Q) = fractional edge cover number of the entire query.

s(Q) = fractional edge cover number of root-to-leaf paths in best f-tree.

1 ≤ s(Q) ≤ ρ∗(Q) ≤ |Q|

There are classes of queries with s(Q)≪ ρ∗(Q).
(There are classes of queries with s(Q) = 1 and ρ∗(Q) = |Q|.)

Challenge 2: Speed Up Query Evaluation

The FDB Query Engine: Support and Design Choices

Current support

flat/factorized → flat/factorized query processing.

queries with selection, projection, equi-join, agg, group-by, order-by, limit.

data types: int, double, string (mapped to int).

Research prototype, still lots to do and improve...

Design choices

Implemented in C++ for in-memory use

Single computation node

Block-oriented execution model
◮ factorized-table-at-a-time processing

Factorizations represented as in-memory trees.
◮ one inner node per n-ary union/product operations.
◮ all leaves that are children of a node stored in a sorted array.

Wish list

distributed computation, factorized data shipped between nodes if necessary.

order-preserving value compression in addition to structure compression.

The FDB Query Engine: Challenges

Query optimization has two tasks:

1 Find a good query evaluation plan and

2 Find a good factorization plan.

Query evaluation:

Operators defined as mappings between f-trees/factorizations.

New operators for locally restructuring the factorization.

A Glimpse at Query Operators

Absorb and Merge (depicted) for selections A = B

· · ·

A

TA

B

TB

7→ · · ·

A,B

TA TB

Swap to restructure by swapping a child with its parent

· · ·

A

TA B

TAB TB

7→ · · ·

B

A

TA TAB

TB

Filter for selections with constant

Project for discarding one leaf attribute

Group-by and order-by supported via restructuring.

Further operators for aggregates and limit.

Experimental Evaluation

Natural use cases for FDB:

Static data with many-to-many relationships

Queries on factorized materialized views
◮ factorize once, speed up all subsequent processing

Data set:

(Factorized) Materialized view R = Orders ✶ Items ✶ Packages

Scale s:

◮ 800s order dates, 100
√
s items, 40

√
s packages, 20

√
s items.

◮ 80s order dates/customer, 2 orders/date.
◮ For s = 32, R has:

⋆ 280M tuples (1.4G singletons) and
⋆ 4.2M singletons when factorized.

F-tree:

package

date

customer

item

price

Queries:

five group-by + aggregate on top of the materialized view R .

relational engines: sort+scan of R .

FDB: various degree of restructuring necessary.

Performance for Aggregates

 0.01

 0.1

 1

 10

 100

 1000

 1 2 4 8 16 32

W
al

l-c
lo

ck
 ti

m
e

[s
ec

]

Database Scale

SQLite: Q2
PSQL: Q2

FDB: Q2
SQLite: Q3

PSQL: Q3
FDB: Q3

Competitors: SQLite 3.7.7 and PostgreSQL 9.1.8 (I/O cost → 0).
Aggregates on top of materialized view R

Q2 = ̟customer; revenue ← sum(price)(R)

Q3 = ̟date, package; sum(price)(R)

Result is flat for all engines.

Performance for Aggregates

Same dataset, now only for scale 32.
FDB f/o = FDB with factorized output.

 0.1

 1

 10

 100

 1000

Q1 Q2 Q3 Q4 Q5

W
al

l-c
lo

ck
 ti

m
e

[s
ec

]

FDB f/o
FDB

 SQLite

PSQL
MonetDB

Q1 = ̟package, date, customer; revenue ← sum(price)(R)

Q2 = ̟customer; revenue ← sum(price)(R)

Q3 = ̟date, package; sum(price)(R)

Q4 = ̟package; sum(price)(R)

Q5 = ̟sum(price)(R)

Materialized Views: Factorized vs. Gzipped

 1

 10

 100

 1 2 4 8 16 32

C
om

pr
es

si
on

 r
at

io

Database Scale

Flat/Fact
Flat/Gzip

Fact/Gzip+Fact

Setup:
Flat = flat relation R in CSV text format

Gzip (compression level 6) outputs binary format

Fatorized output in text format (each digit represented as one byte character)

Observations:

Gzip does not exploit repetitions!

Factorizations can be arbitrarily more succinct than gzipped relations.

Gzipping factorizations only improves the compression by a constant factor.

Thanks!

More Succinct Representations: DAG

Avoid repeating identical expressions: store them once and use pointers.

AR ,AS ,AT

BR ,BS

C D

ET ,EU

F

⋃

a∈AR ,AS ,AT

[

〈a〉 × · · · ×
⋃

e∈ET ,EU

(

〈e〉 ×
(

⋃

f∈F

〈f 〉
))]

Node {F} only depends on {ET ,EU}.

A fixed 〈e〉 binds with the same
⋃

f∈F
〈f 〉 for each 〈a〉.

⇒ store the mapping 〈e〉 7→
⋃

f∈F
〈f 〉 separately.

⋃

a∈AR ,AS ,AT

[

〈a〉 × · · · ×
⋃

e∈ET ,EU

(

〈e〉 × Ue

)]

;
{

Ue =
⋃

f∈F

〈f 〉
}

Some Query Operators in More Detail

Restructuring operators

Normalisation factors out expressions common to all terms of a union.
Example: f-tree nodes A and B do not have dependent attributes.

· · ·
A

B
TB

TA

7→ · · ·
B
TB

A
TA

Swap exchanges a node with its parent while preserving normalisation.
Example: TA depends on A only, TB depends on B only, TAB depends on
both A and B

· · ·
A

TA B
TAB TB

7→ · · ·
B

A
TA TAB

TB

Some Query Operators in More Detail

Selection operators A = B , where A and B label nodes A and B respectively.

Merge siblings A and B into a single node

· · ·
A
TA

B
TB

7→ · · ·
A,B

TA TB

Absorb B into its ancestor A. Example: Ti depends on B and Ci

· · ·
A
C1
· · ·
Ck
B

T0 T1 . . . Tk

7→ · · ·
A,B
T0 C1
T1 · · ·
· · · Ck
Tk

Select Aθc does not change the f-tree; it removes from the factorization all
products containing A-singletons 〈a〉 for which a¬θc .

Query Optimization

Goal: Find the best f-plan = query and factorization plan

Optimal factorization of the query result

Minimal computation cost, i.e., the sizes of intermediate results

Cost computation based on s(Q) or cardinality and selectivity estimates

Search space defined by

selection operators may require several swaps before application,

choice of selection operators and f-tree transformations for each join,

choice of order for join conditions,

projection push-downs.

Query Optimization: Example

Build f-plan for selection B = F on the leftmost f-tree, with dependencies
{A,B ,C} and {D,E ,F}.
Alternative f-plans (cost given by max s(Ti) over all Ti ’s in the f-plan):

1 Input and output f-trees with cost 1, intermediate with cost 2

A,D

B

C

E

F

swap {A,D},B
7→ B

A,D

C E

F

absorb B,F
7→ B ,F

A,D

C E

2 All three f-trees have cost 1.

A,D

B

C

E

F

swap E ,F
7→ A,D

B

C

F

E

merge B,F
7→ A,D

B ,F

C E

Intuition – Fractional Edge Covers

A

B

C D

E

FR S

T

U

For a query Q = R1 ✶ · · · ✶ Rn, the fractional edge cover number ρ∗(Q) is the
cost of an optimal solution to the linear program

minimizing
∑

i
xRi

subject to
∑

i :Ri has attribute A
xRi
≥ 1 for all attributes A,

xRi
≥ 0 for all Ri .

xRi
is the weight of relation Ri .

Each attribute has to be covered by relations with sum of weights ≥ 1.

In the non-weighted edge cover, the variables xRi
∈ {0, 1}

Performance for conjunctive queries

Performance follows the size gap between flat and factorized input/output data.

103

104

105

106

107

108

109

 1000 10000 100000

size N of each input relation

3 relations of 3 attributes each
 data with Zipf distribution over [1 .. 100]

K = 2
K = 2

K = 3
K = 3

K = 4
K = 4

10-2

10-1

100

101

102

 1000 10000 100000

size N of each input relation

3 relations of 3 attributes each
 data with Zipf distribution over [1 .. 100]

K = 2
K = 3
K = 4

K = 2
K = 3
K = 4

K = 2
K = 3
K = 4

Left: Size gap (in number of singletons).

Right: performance gap (in seconds; wall-clock time).

K = number of equi-joins.

Query engines: FDB, RDB, SQLite.

