
Query	
 Petabytes	
 of	
 Data	
 in	
 a	

Blink	
 Time!	

Barzan	
 Mozafari	

University	
 of	
 Michigan,	
 Ann	
 Arbor	

BlinkDB:	

Collaborators	

Sameer	
 Agarwal	

Aurojit	
 Panda	

Henry	
 Milner	

Ion	
 Stoica	

	

Samuel	
 Madden	

UC	
 Berkeley	

My	
 Research	
 …	

Using	
 statistics	
 to	
 build	
 better	
 data-­‐
intensive	
 systems	

1.   More	
 predictable	

Ø How	
 to	
 predict	
 resources	
 in	
 a	
 DB?	

Ø How	
 to	
 design	
 a	
 more	
 predictable	
 DB?	

2.   More	
 scalable	

Ø How	
 to	
 scale	
 crowdsourcing?	

Ø How	
 to	
 query	
 petabytes	
 of	
 data	
 in	
 seconds?	

Online	
 Media	
 Websites	

Real-­‐Ime	
 Ad-­‐performance,	
 Spam	
 DetecIon	

Big	
 Data	

Log	
 Processing	
 	

Root-­‐cause	
 Analysis,	
 A/B	
 TesIng	

Big	
 Data	

Overview	

Problem:	
 	
 Need	
 to	
 compute	
 aggregate	
 staIsIcs	

over	
 massive	
 sets	
 of	
 data	

	

Our	
 Goal:	
 Support	
 interacIve	
 ad-­‐hoc	
 analyIcal	

queries	
 over	
 these	
 large	
 datasets	

Hard	
 Disks	

1-­‐2	
 Hours	
 25-­‐30	
 Minutes	
 1	
 second	

?	

Memory	

100	
 TB	
 on	
 1000	
 machines	

Target	
 Workload	

1.   Real-­‐Eme	
 latency	
 is	
 valued	
 over	
 perfect	

accuracy	

“On a good day, I can run up to 6
queries in Hive.”
- Anonymous Data Scientist at

Target	
 Workload	

1.   Real-­‐Eme	
 latency	
 is	
 valued	
 over	
 perfect	

accuracy:	
 ≤	
 10	
 sec	
 for	
 interacEve	
 experience	

	

“On a good day, I can run up to 6
queries in Hive.”
- Anonymous Data Scientist at

Target	
 Workload	

1.   Real-­‐Eme	
 latency	
 is	
 valued	
 over	
 perfect	

accuracy:	
 ≤	
 10	
 sec	
 for	
 interacEve	
 experience	

2.  ExploraIon	
 is	
 ad-­‐hoc	

3.  Columns	
 queried	
 together	
 (i.e.,	
 Templates)	
 are	

stable	
 over	
 Ime	

	

1.   Real-­‐Eme	
 latency	
 is	
 valued	
 over	
 perfect	

accuracy:	
 ≤	
 10	
 sec	
 for	
 interacEve	
 experience	

2.  ExploraIon	
 is	
 ad-­‐hoc	

3.  Columns	
 queried	
 together	
 (i.e.,	
 Templates)	
 are	

stable	
 over	
 Ime	

	





















     






















68,785	
 Queries	
 ≈	
 211	
 Templates	

90%	
 Queries	
 ≈	
 20%	
 Templates	

Target	
 Workload	

Target	
 Workload	

1.   Real-­‐Eme	
 latency	
 is	
 valued	
 over	
 perfect	

accuracy:	
 ≤	
 10	
 sec	
 for	
 interacEve	
 experience	

2.  ExploraIon	
 is	
 ad-­‐hoc	

3.  Columns	
 queried	
 together	
 (i.e.,	
 Templates)	
 are	

stable	
 over	
 Ime	

	





















     






















17,437	
 Queries	
 ≈	
 108	
 Templates	

90%	
 Queries	
 ≈	
 10%	
 Templates	

Target	
 Workload	

1.   Real-­‐Eme	
 latency	
 is	
 valued	
 over	
 perfect	

accuracy:	
 ≤	
 10	
 sec	
 for	
 interacEve	
 experience	

2.  ExploraIon	
 is	
 ad-­‐hoc	

3.  Columns	
 queried	
 together	
 (i.e.,	
 Templates)	
 are	

stable	
 over	
 Ime	

4.  User	
 defined	
 funcIons	
 (UDF)	
 must	
 be	

supported:	
 43.6%	
 of	
 Conviva’s	
 queries	
 	

5.  Data	
 is	
 high-­‐dimensional	
 &	
 skewed:	
 +100	

columns	

Hard	
 Disks	

1-­‐2	
 Hours	
 25-­‐30	
 Minutes	
 1	
 second	

?	

Memory	

100	
 TB	
 on	
 1000	
 machines	

One	
 can	
 ocen	
 make	
 perfect	
 decision	
 without	

perfect	
 answers	
 	

ApproximaIon	
 Sampling-­‐based	
 ApproximaIon	
 ApproximaIon	
 using	
 Offline	
 Samples	

SELECT	
 avg(sessionTime)	
 	

FROM	
 Table	
 	

WHERE	
 city=‘San	
 Francisco’	

WITHIN	
 1	
 SECONDS	
 234.23	
 ±	
 15.32	

BlinkDB	
 Interface	

SELECT	
 avg(sessionTime)	
 	

FROM	
 Table	
 	

WHERE	
 city=‘San	
 Francisco’	

WITHIN	
 2	
 	
 SECONDS	
 239.46	
 ±	
 4.96	

SELECT	
 avg(sessionTime)	
 	

FROM	
 Table	
 	

WHERE	
 city=‘San	
 Francisco’	

ERROR	
 0.1	
 CONFIDENCE	
 95.0%	

234.23	
 ±	
 15.32	

BlinkDB	
 Interface	

BlinkDB	
 Architecture	

…

…

…

…

…

…

Offline	
 sampling:	

» Uniform	

» Stratified	
 on	

different	
 sets	
 of	

columns	

» Different	
 sizes	

TABLE	

Original	
 	

Data	

In-­‐Memory	

Samples	

On-­‐Disk	

Samples	

Sa
m
pl
in
g	

M
od

ul
e	

BlinkDB	
 Architecture	

Sa

m
pl
in
g	

M
od

ul
e	
 …	

…	

…	

…	

…	

…	

Predict	
 time	

and	
 error	
 of	
 the	

query	
 for	
 each	

sample	
 type	

TABLE	

Original	
 	

Data	

In-­‐Memory	

Samples	

On-­‐Disk	

Samples	

	

SELECT	
 	
 foo	
 (*)	

FROM	
 TABLE	

IN	
 TIME	
 2	
 SECONDS	

Query	
 Plan	

Sample	
 Selection	

BlinkDB	
 Architecture	

Sa

m
pl
in
g	

M
od

ul
e	

…

…

…

…

…

…

In-­‐Memory	

Samples	

On-­‐Disk	

Samples	

Error	
 Bars	
 &	

Confidence	
 Intervals	

Result	

182.23	
 ±	
 5.56	

(95%	
 confidence)	

Parallel	

execution	

TABLE	

Original	
 	

Data	

New	
 Query	
 Plan	

Sample	
 Selection	

	

SELECT	
 	
 foo	
 (*)	

FROM	
 TABLE	

IN	
 TIME	
 2	
 SECONDS	

Hive	

Hadoop	
 Spark	
 Presto	

1.  How	
 to	
 accurately	
 estimate	
 the	
 error?	

-  What	
 about	
 UDFs?	
 (43.6%	
 of	
 Conviva	
 queries)	

-  What	
 if	
 the	
 error	
 estimate	
 itself	
 is	
 wrong?	

2.  Given	
 a	
 storage	
 budget,	
 which	
 samples	
 to	

build	
 &	
 maintain	
 to	
 support	
 a	
 wide	
 range	
 of	

ad-­‐hoc	
 exploratory	
 queries?	

3.  Given	
 a	
 query,	
 what	
 should	
 be	
 the	
 optimal	

sample	
 type	
 and	
 size	
 that	
 can	
 be	
 processed	

to	
 meet	
 its	
 constraints?	

Three	
 Key	
 Sets	
 of	
 Challenges	

Closed-­‐Form	
 Error	
 Estimates	

Closed form approximations to variance of sample

estimators for BlinkDB

Henry Milner

04/06/13

Notation:

1. µ = E[X]

2. µk is the kth central moment of the underlying distribution, E[(X�E[X])

k
]

(note that µ1 = 0, not µ)

3. �2
= µ2

2 is the variance of the underlying distribution

4. p is the frequency of rows (the probability that a row matches the filter

predicate for the query)

The following results are (asymptotically in sample size) true, but not di-

rectly useful, since they depend on unknown properties of the underlying dis-

tribution. In all cases we just plug in the sample values. For example, instead

of µ we use

1
n

Pn
i=1 Xi where Xi is the ith sample value.

Note that for estimators other than sum and count, I assume no filtering

(p = 1). Filtering will increase variance a bit, or potentially a lot for extremely

selective queries (p = 0). I can compute the filtering-adjusted values if you like.

1. Count: N(np, n(1� p)p)

2. Sum: N(npµ, np(�2
+ (1� p)µ2

))

3. Mean: N(µ,�2/n)

4. Variance: N(�2, (µ4 � �4
)/n)

5. Stddev: N(�, (µ4 � �4
)/(4�2n))

1

What about more complex queries?
Ø  UDFs, nested queries, joins, ...

Central Limit Theorem (CLT)

Bootstrap	
 [Efron	
 1979]	

Quantify	
 accuracy	
 of	
 a	
 sample	
 estimator	
 	
 f()

f (X)

S

random	

sample	

Distribution	
 X

|S| = N f (S)

can’t	
 compute	
 f (X)
as	
 we	
 don’t	
 have	
 X

what	
 is	
 f(S)’s	
 error?

S1

Sk

…
	

f (S1)

f (Sk)

…
	

|Si| = N

sampling	

with	
 	

replacement	

• estimator:	
 mean(f(Si))
• error,	
 e.g.:	
 stdev(f(Si))

Quantify	
 accuracy	
 of	
 a	
 query	
 on	
 a	
 sample	
 table

Q(T) Q(T) takes	
 too	
 long!

Q(S) what	
 is	
 Q(S)’s	
 error?

sample	

|S| = N S

T Original	
 	

Table	

Q (S1)

Q (Sk)

…
	

|Si| = N

sampling	

with	
 	

replacement	

S1

Sk

…
	

Bootstrap	

• estimator:	
 mean(f(Si))
• error,	
 e.g.:	
 stdev(f(Si))

Q (S1)

Q (Sk)

…
	
 S1

Sk

…
	

Bootstrap	

1.  Bootstrap	
 treats	
 Q	
 as	
 a	
 black-­‐box	
 	

Ø  Can	
 handle	
 (almost)	
 arbitrarily	
 complex	
 queries	

including	
 UDFs!	

2.   Embarrassingly	
 Parallel	

Uses	
 too	

many	

resources	
 in	

the	
 cluster	

Error	
 EsEmaEon	

1.	
 CLT-­‐based	
 closed	
 forms:	

Ø  Fast	
 but	
 limited	
 to	
 simple	
 aggregates	

2.	
 Bootstrap	
 (Monte	
 Carlo	
 simulation):	

Ø  Expensive	
 but	
 general	

3.	
 Analytical	
 Bootstrap	
 Method	
 (ABM):	

Ø  Fast	
 and	
 general	
 	

ü  (some	
 restrictions,	
 e.g.	
 no	
 UDF,	
 some	
 self	
 joins,	
 ...)	

AnalyEcal	
 Bootstrap	
 Method*	

Key	
 Idea:	

1.  Annotate	
 tuples	
 w/	
 integer	
 random	
 variables	

Ø  Probabilistic	
 Multiset	
 Database	

2.  Extend	
 relational	
 operators	
 to	
 manipulate	

these	
 random	
 variables	
 	

3.  Use	
 a	
 single	
 execution	
 to	
 estimate	
 the	

empirical	
 distribution	
 	

	

sum	
 sum	

div	

filter1	
 filter2	

y,	
 ε2	
 x,	
 ε1	

S

Every	
 error	
 propagation	
 step	
 may	

introduce	
 additional	
 error	
 	
 	

r	
 =	
 x/y,	
 ε	
 =	
 epr(ε1,	
 ε2)	

* The Analytical Bootstrap: A New Method for Fast Error Estimation in Approximate
Query Processing, K. Zeng, G. Shi, B. Mozafari, C. Zaniolo, under submission

TPC-­‐H	
 Experiment	

10^-1
10^0
10^1
10^2
10^3
10^4
10^5
10^6

Q1 Q3 Q5 Q6 Q7 Q8 Q9 Q10
Q11

Q12
Q14

Q16
Q17

Q18
Q19

Q20
Q22

Ex
ec

ut
io

n
Ti

m
e(

S)

Bootstrap
BLB-10

ODM
ABM

10^-1
10^0
10^1
10^2
10^3
10^4
10^5
10^6

Q1 Q3 Q5 Q6 Q7 Q8 Q9 Q10
Q11

Q12
Q14

Q16
Q17

Q18
Q19

Q20
Q22

Ex
ec

ut
io

n
Ti

m
e(

S)

Bootstrap
BLB-10

ODM
ABM

ABM is 2-4 orders of magnitude faster than
simulation-based implementations of bootstrap

1.  How	
 to	
 accurately	
 estimate	
 the	
 error?	

-  What	
 about	
 UDFs?	
 (43.6%	
 of	
 Conviva	
 queries)	

-  What	
 if	
 the	
 error	
 estimate	
 itself	
 is	
 wrong?	

2.  Given	
 a	
 storage	
 budget,	
 which	
 samples	
 to	

build	
 &	
 maintain	
 to	
 support	
 a	
 wide	
 range	
 of	

ad-­‐hoc	
 exploratory	
 queries?	

3.  Given	
 a	
 query,	
 what	
 should	
 be	
 the	
 optimal	

sample	
 type	
 and	
 size	
 that	
 can	
 be	
 processed	

to	
 meet	
 its	
 constraints?	

Three	
 Key	
 Sets	
 of	
 Challenges	

Problem	
 with	
 Uniform	

Samples	

SELECT	
 avg(salary)	

FROM	
 table	

WHERE	
 city	
 =	
 ‘Ann	
 Arbor’	

ID	
 City	
 Age	
 Salary	

1	
 NYC	
 22	
 50,000	

2	
 Ann	
 Arbor	
 25	
 120,242	

3	
 NYC	
 25	
 78,212	

4	
 NYC	
 67	
 62,492	

5	
 NYC	
 34	
 98,341	

6	
 Ann	
 Arbor	
 62	
 78,453	

Uniform	
 Sample	

ID	
 City	
 Age	
 Salary	
 Sampling	

Rate	

3	
 NYC	
 25	
 78,212	
 1/3	

5	
 NYC	
 34	
 98,341	
 1/3	

ID	
 City	
 Age	
 Salary	
 Sampling	

Rate	

3	
 NYC	
 25	
 78,212	
 1/3	

5	
 NYC	
 34	
 98,341	
 1/3	

Problem	
 with	
 Uniform	

Samples	

Larger	

ID	
 City	
 Age	
 Salary	
 Sampling	

Rate	

3	
 NYC	
 25	
 78,212	
 2/3	

5	
 NYC	
 34	
 98,341	
 2/3	

1	
 NYC	
 22	
 50,000	
 2/3	

2	
 Ann	
 Arbor	
 25	
 120,242	
 2/3	

ID	
 City	
 Age	
 Salary	

1	
 NYC	
 22	
 50,000	

2	
 Ann	
 Arbor	
 25	
 120,242	

3	
 NYC	
 25	
 78,212	

4	
 NYC	
 67	
 62,492	

5	
 NYC	
 34	
 98,341	

6	
 Ann	
 Arbor	
 62	
 78,453	
 SELECT	
 avg(salary)	

FROM	
 table	

WHERE	
 city	
 =	
 ‘Ann	
 Arbor’	

Uniform	
 Sample	

Stratified	
 Samples	

AND	
 age	
 >	
 60	

Stratified Sample on City

ID	
 City	
 Age	
 Salary	
 Sampling	

Rate	

3	
 NYC	
 67	
 62,492	
 1/4	

5	
 Ann	
 Arbor	
 25	
 120,242	
 1/2	

ID	
 City	
 Age	
 Salary	

1	
 NYC	
 22	
 50,000	

2	
 Ann	
 Arbor	
 25	
 120,242	

3	
 NYC	
 25	
 78,212	

4	
 NYC	
 67	
 62,492	

5	
 NYC	
 34	
 98,341	

6	
 Ann	
 Arbor	
 62	
 78,453	
 SELECT	
 avg(salary)	

FROM	
 table	

WHERE	
 city	
 =	
 ‘Ann	
 Arbor’	

Target	
 Workload	

1.   Real-­‐Eme	
 latency	
 is	
 valued	
 over	
 perfect	

accuracy:	
 ≤	
 10	
 sec	
 for	
 interacEve	
 experience	

2.  ExploraIon	
 is	
 ad-­‐hoc	

3.  Columns	
 queried	
 together	
 (i.e.,	
 Templates)	
 are	

stable	
 over	
 Ime	

4.  User	
 defined	
 funcIons	
 (UDF)	
 must	
 be	

supported:	
 43.6%	
 of	
 Conviva’s	
 queries	
 	

5.  Data	
 is	
 high-­‐dimensional	
 &	
 skewed:	
 +100	

columns	

Which	
 Stratified	
 Samples	
 to	
 Build?	

For	
 n	
 columns,	
 2n	
 possible	
 stratified	
 samples	

Modern	
 data	
 warehouses:	
 	
 n	
 ≈	
 100-­‐200	

Our	
 solution:	
 Choosing	
 the	
 best	
 set	
 of	

samples	
 by	
 considering	

1.  Columns	
 queried	
 together	

2. Data	
 distribution	

3.  Storage	
 costs	

	

	

OpEmal	
 Set	
 of	
 Samples	

[City]	

ID	
 City	
 Age	
 Salary	

1	
 NYC	
 25	
 50,000	

2	
 NYC	
 35	
 62,492	

3	
 Ann	
 Arbor	
 35	
 78,212	

4	
 NYC	
 25	
 120,242	

5	
 NYC	
 35	
 98,341	

6	
 Berkeley	
 25	
 75,453	

7	
 NYC	
 25	
 60,000	

8	
 NYC	
 35	
 72,492	

9	
 Berkeley	
 45	
 88,212	

10	
 Berkeley	
 35	
 92,242	

11	
 NYC	
 35	
 70,000	

12	
 Ann	
 Arbor	
 45	
 102,492	

[Age]	

[Salary]	

[City,	
 Age]	

[Age,	
 Salary]	

[City,	
 Salary]	

[City,	
 Age,	
 Salary]	

[City]	

[Age]	

[Salary]	

[City,	
 Age]	

[Age,	
 Salary]	

[City,	
 Salary]	

[City,	
 Age,	
 Salary]	

SELECT	
 AVG	
 (…)	

FROM	
 Table	

WHERE	
 Age	
 =	
 x	

Query	
 Coverage	

Query	
 Coverage	

[City]	

[Age]	

[Salary]	

[City,	
 Age]	

[Age,	
 Salary]	

[City,	
 Salary]	

[City,	
 Age,	
 Salary]	

SELECT	
 AVG	
 (…)	

FROM	
 Table	

WHERE	
 Age	
 =	
 x	

0%	

100%	

0%	

100%	

100%	

0%	

100%	

Query	
 Coverage	

[City]	

[Age]	

[Salary]	

[City,	
 Age]	

[Age,	
 Salary]	

[City,	
 Salary]	

[City,	
 Age,	
 Salary]	

SELECT	
 AVG	
 (…)	

FROM	
 Table	

WHERE	
 Age	
 =	
 x	
 	
 AND	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 City	
 =	
 z	
 	

Query	
 Coverage	

[City]	

[Age]	

[Salary]	

[City,	
 Age]	

[Age,	
 Salary]	

[City,	
 Salary]	

[City,	
 Age,	
 Salary]	

SELECT	
 AVG	
 (…)	

FROM	
 Table	

WHERE	
 Age	
 =	
 x	
 	
 AND	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 City	
 =	
 z	
 	

100%	

100%	

Query	
 Coverage	

[City]	

[Age]	

[Salary]	

[City,	
 Age]	

[Age,	
 Salary]	

[City,	
 Salary]	

[City,	
 Age,	
 Salary]	

SELECT	
 AVG	
 (…)	

FROM	
 Table	

WHERE	
 Age	
 =	
 x	
 	
 AND	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 City	
 =	
 z	
 	

?	

0%	

100%	

100%	

?	

?	

?	

Query	
 Coverage	

[City]	

[Age]	

[Salary]	

[City,	
 Age]	

[Age,	
 Salary]	

[City,	
 Salary]	

[City,	
 Age,	
 Salary]	

SELECT	
 AVG	
 (…)	

FROM	
 Table	

WHERE	
 Age	
 =	
 x	
 	
 AND	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 City	
 =	
 z	
 	

83%	

0%	

100%	

100%	

50%	

100%	

100%	

K

B1

B21

B22

B31

B32

B33

B41

B42

B51

B52

B6 B7 B8

B43

x

(a)

K

B1

B21

B22

B31

B32

B33

B51

B52

B6 B7 B8

B43

K1
B42

B41

x

(b)
Figure �. (a) Possible storage layout for strati�ed sample S(�,K).

dimensional strati�ed samples. As described above, each
strati�ed sample can potentially be used at runtime to im-
prove query accuracy and latency, especially when the orig-
inal table contains small groups for a particular column set.
However, each stored sample has a storage cost equal to its
size, and the number of potential samples is exponential in
the number of columns. As a result, we need to be careful
in choosing the set of column-sets on which to build strati-
�ed samples.We formulate the trade-o� between storage cost
and query accuracy/performance as an optimization prob-
lem, described next.

�.�.� Problem Formulation
�e optimization problem takes three factors into account in
determining the sets of columns on which strati�ed samples
should be built: the “sparsity” of the data,workload character-
istics, and the storage cost of samples.

Sparsity of the data. A strati�ed sample on � is useful when
the original table T contains many small groups under �.
Consider aQCS � in table T . Recall thatD(�) denotes the set
of all distinct values on columns � in rows of T . We de�ne a
“sparsity” function ∆(�,M) as the number of groups whose
size in T is less than some number M�:

∆(�,M) = �{x ∈ D(�) ∶ �Tx � < M}�
Workload.A strati�ed sample is only useful when it is bene-
�cial to actual queries. Under our model for queries, a query
has a QCS q j with some (unknown) probability p j - that is,
QCSs are drawn from aMultinomial (p� , p� , ...) distribution.
�e best estimate of p j is simply the frequency of queries with
QCS q j in past queries.

Storage cost. Storage is the main constraint against build-
ing too many strati�ed samples, and against building strat-
i�ed samples on large column sets that produce too many
groups. �erefore, we must compute the storage cost of po-
tential samples and constrain total storage. To simplify the
formulation, we assume a single value of K for all samples;
a sample family � either receives no samples or a full sam-
ple with K elements of Tx for each x ∈ D(�). �S(�,K)� is the
storage cost (in rows) of building a strati�ed sample on a set
of columns �.
�Appropriate values for M will be discussed later in this section. Alterna-
tively, one could plug in di�erent notions of sparsity of a distribution in our
formulation.

Given these three factors de�ned above, we now introduce
our optimization formulation. Let the overall storage capacity
budget (again in rows) be C. Our goal is to select β column
sets from among m possible QCSs, say � i� ,�, � iβ , which can
best answer our queries, while satisfying:

β�
k=�
�S(� ik ,K)� ≤ C

Speci�cally, inBlinkDB, wemaximize the followingmixed
integer linear program (MILP) in which j indexes over all
queries and i indexes over all possible column sets:

G =�
j
p j ⋅ y j ⋅ ∆(q j ,M) (�)

subject to
m�
i=� �S(� i ,K)� ⋅ zi ≤ C (�)

and

∀ j ∶ y j ≤ max
i∶� i⊆q j∪i∶� i⊃q j

(zi min �,
�D(� i)��D(q j)�) (�)

where � ≤ y j ≤ � and zi ∈ {�, �} are variables.
Here, zi is a binary variable determiningwhether a sample

family should be built or not, i.e., when zi = �, we build a
sample family on � i ; otherwise, when zi = �, we do not.

�e goal function (�) aims to maximize the weighted sum
of the coverage of the QCSs of the queries, q j . If we create a
strati�ed sample S(� i ,K), the coverage of this sample for q j
is de�ned as the probability that a given value x of columns q j
is also present among the rows of S(� i ,K). If � i ⊇ q j , then q j
is covered exactly, but � i ⊂ q j can also be useful by partially
covering q j . At runtime, if no strati�ed sample is available that
exactly covers a theQCS for a query, a partially-coveringQCS
may be used instead. In particular, the uniform sample is a
degenerate case with � i = �; it is useful for many queries but
less useful than more targeted strati�ed samples.

Since the coverage probability is hard to compute in prac-
tice, in this paper we approximate it by y j , which is deter-
mined by constraint (�).�e y j value is in [�, �], with �mean-
ing no coverage, and � meaning full coverage. �e intuition
behind (�) is that when we build a strati�ed sample on a
subset of columns � i ⊆ q j , i.e. when zi = �, we have par-
tially covered q j , too. We compute this coverage as the ra-
tio of the number of unique values between the two sets, i.e.,

Cost	
 of	
 StraEficaEon	

ID	
 City	
 Age	
 Salary	

1	
 NYC	
 25	
 50,000	

2	
 NYC	
 25	
 80,000	

3	
 Ann	
 Arbor	
 35	
 80,000	

4	
 NYC	
 25	
 120,000	

5	
 NYC	
 25	
 80,000	

6	
 Berkeley	
 25	
 80,000	

7	
 NYC	
 25	
 60,000	

8	
 NYC	
 25	
 70,000	

9	
 Berkeley	
 30	
 80,000	

10	
 Berkeley	
 25	
 90,000	

11	
 NYC	
 40	
 80,000	

12	
 Ann	
 Arbor	
 45	
 100,000	

ID	
 City	
 Age	
 Salary	
 Ratio	

1	
 NYC	
 25	
 50,000	
 2/7	

8	
 NYC	
 35	
 70,000	
 2/7	

6	
 Berkeley	
 25	
 80,000	
 2/3	

10	
 Berkeley	
 25	
 90,000	
 2/3	

3	
 Ann	
 Arbor	
 35	
 80,000	
 1	

12	
 Ann	
 Arbor	
 45	
 100,000	
 1	

Stratified	
 Sample	
 on	

[City]	

Cost	
 =	
 6	

ID	
 City	
 Age	
 Salary	

1	
 NYC	
 25	
 50,000	

2	
 NYC	
 25	
 80,000	

3	
 Ann	
 Arbor	
 35	
 80,000	

4	
 NYC	
 25	
 120,000	

5	
 NYC	
 25	
 80,000	

6	
 Berkeley	
 25	
 80,000	

7	
 NYC	
 25	
 60,000	

8	
 NYC	
 25	
 70,000	

9	
 Berkeley	
 30	
 80,000	

10	
 Berkeley	
 25	
 90,000	

11	
 NYC	
 40	
 80,000	

12	
 Ann	
 Arbor	
 45	
 100,000	

Cost	
 of	
 StraEficaEon	

ID	
 City	
 Age	
 Salary	
 Ratio	

1	
 NYC	
 25	
 50,000	
 1	

7	
 NYC	
 25	
 60,000	
 1	

8	
 NYC	
 25	
 70,000	
 1	

3	
 Ann	
 Arbor	
 35	
 80,000	
 1/3	

9	
 Berkeley	
 30	
 80,000	
 1/3	

10	
 Berkeley	
 25	
 90,000	
 1	

12	
 Ann	
 Arbor	
 45	
 100,000	
 1	

4	
 NYC	
 25	
 120,000	
 1	

Stratified	
 Sample	
 on	

[Salary]	

Cost	
 =	
 8	

K

B1

B21

B22

B31

B32

B33

B41

B42

B51

B52

B6 B7 B8

B43

x

(a)

K

B1

B21

B22

B31

B32

B33

B51

B52

B6 B7 B8

B43

K1
B42

B41

x

(b)
Figure �. (a) Possible storage layout for strati�ed sample S(�,K).

dimensional strati�ed samples. As described above, each
strati�ed sample can potentially be used at runtime to im-
prove query accuracy and latency, especially when the orig-
inal table contains small groups for a particular column set.
However, each stored sample has a storage cost equal to its
size, and the number of potential samples is exponential in
the number of columns. As a result, we need to be careful
in choosing the set of column-sets on which to build strati-
�ed samples.We formulate the trade-o� between storage cost
and query accuracy/performance as an optimization prob-
lem, described next.

�.�.� Problem Formulation
�e optimization problem takes three factors into account in
determining the sets of columns on which strati�ed samples
should be built: the “sparsity” of the data,workload character-
istics, and the storage cost of samples.

Sparsity of the data. A strati�ed sample on � is useful when
the original table T contains many small groups under �.
Consider aQCS � in table T . Recall thatD(�) denotes the set
of all distinct values on columns � in rows of T . We de�ne a
“sparsity” function ∆(�,M) as the number of groups whose
size in T is less than some number M�:

∆(�,M) = �{x ∈ D(�) ∶ �Tx � < M}�
Workload.A strati�ed sample is only useful when it is bene-
�cial to actual queries. Under our model for queries, a query
has a QCS q j with some (unknown) probability p j - that is,
QCSs are drawn from aMultinomial (p� , p� , ...) distribution.
�e best estimate of p j is simply the frequency of queries with
QCS q j in past queries.

Storage cost. Storage is the main constraint against build-
ing too many strati�ed samples, and against building strat-
i�ed samples on large column sets that produce too many
groups. �erefore, we must compute the storage cost of po-
tential samples and constrain total storage. To simplify the
formulation, we assume a single value of K for all samples;
a sample family � either receives no samples or a full sam-
ple with K elements of Tx for each x ∈ D(�). �S(�,K)� is the
storage cost (in rows) of building a strati�ed sample on a set
of columns �.
�Appropriate values for M will be discussed later in this section. Alterna-
tively, one could plug in di�erent notions of sparsity of a distribution in our
formulation.

Given these three factors de�ned above, we now introduce
our optimization formulation. Let the overall storage capacity
budget (again in rows) be C. Our goal is to select β column
sets from among m possible QCSs, say � i� ,�, � iβ , which can
best answer our queries, while satisfying:

β�
k=�
�S(� ik ,K)� ≤ C

Speci�cally, inBlinkDB, wemaximize the followingmixed
integer linear program (MILP) in which j indexes over all
queries and i indexes over all possible column sets:

G =�
j
p j ⋅ y j ⋅ ∆(q j ,M) (�)

subject to
m�
i=� �S(� i ,K)� ⋅ zi ≤ C (�)

and

∀ j ∶ y j ≤ max
i∶� i⊆q j∪i∶� i⊃q j

(zi min �,
�D(� i)��D(q j)�) (�)

where � ≤ y j ≤ � and zi ∈ {�, �} are variables.
Here, zi is a binary variable determiningwhether a sample

family should be built or not, i.e., when zi = �, we build a
sample family on � i ; otherwise, when zi = �, we do not.

�e goal function (�) aims to maximize the weighted sum
of the coverage of the QCSs of the queries, q j . If we create a
strati�ed sample S(� i ,K), the coverage of this sample for q j
is de�ned as the probability that a given value x of columns q j
is also present among the rows of S(� i ,K). If � i ⊇ q j , then q j
is covered exactly, but � i ⊂ q j can also be useful by partially
covering q j . At runtime, if no strati�ed sample is available that
exactly covers a theQCS for a query, a partially-coveringQCS
may be used instead. In particular, the uniform sample is a
degenerate case with � i = �; it is useful for many queries but
less useful than more targeted strati�ed samples.

Since the coverage probability is hard to compute in prac-
tice, in this paper we approximate it by y j , which is deter-
mined by constraint (�).�e y j value is in [�, �], with �mean-
ing no coverage, and � meaning full coverage. �e intuition
behind (�) is that when we build a strati�ed sample on a
subset of columns � i ⊆ q j , i.e. when zi = �, we have par-
tially covered q j , too. We compute this coverage as the ra-
tio of the number of unique values between the two sets, i.e.,

MILP	
 Formulation	

Maximize	

K

B1

B21

B22

B31

B32

B33

B41

B42

B51

B52

B6 B7 B8

B43

x

(a)

K

B1

B21

B22

B31

B32

B33

B51

B52

B6 B7 B8

B43

K1
B42

B41

x

(b)
Figure �. (a) Possible storage layout for strati�ed sample S(�,K).

dimensional strati�ed samples. As described above, each
strati�ed sample can potentially be used at runtime to im-
prove query accuracy and latency, especially when the orig-
inal table contains small groups for a particular column set.
However, each stored sample has a storage cost equal to its
size, and the number of potential samples is exponential in
the number of columns. As a result, we need to be careful
in choosing the set of column-sets on which to build strati-
�ed samples.We formulate the trade-o� between storage cost
and query accuracy/performance as an optimization prob-
lem, described next.

�.�.� Problem Formulation
�e optimization problem takes three factors into account in
determining the sets of columns on which strati�ed samples
should be built: the “sparsity” of the data,workload character-
istics, and the storage cost of samples.

Sparsity of the data. A strati�ed sample on � is useful when
the original table T contains many small groups under �.
Consider aQCS � in table T . Recall thatD(�) denotes the set
of all distinct values on columns � in rows of T . We de�ne a
“sparsity” function ∆(�,M) as the number of groups whose
size in T is less than some number M�:

∆(�,M) = �{x ∈ D(�) ∶ �Tx � < M}�
Workload.A strati�ed sample is only useful when it is bene-
�cial to actual queries. Under our model for queries, a query
has a QCS q j with some (unknown) probability p j - that is,
QCSs are drawn from aMultinomial (p� , p� , ...) distribution.
�e best estimate of p j is simply the frequency of queries with
QCS q j in past queries.

Storage cost. Storage is the main constraint against build-
ing too many strati�ed samples, and against building strat-
i�ed samples on large column sets that produce too many
groups. �erefore, we must compute the storage cost of po-
tential samples and constrain total storage. To simplify the
formulation, we assume a single value of K for all samples;
a sample family � either receives no samples or a full sam-
ple with K elements of Tx for each x ∈ D(�). �S(�,K)� is the
storage cost (in rows) of building a strati�ed sample on a set
of columns �.
�Appropriate values for M will be discussed later in this section. Alterna-
tively, one could plug in di�erent notions of sparsity of a distribution in our
formulation.

Given these three factors de�ned above, we now introduce
our optimization formulation. Let the overall storage capacity
budget (again in rows) be C. Our goal is to select β column
sets from among m possible QCSs, say � i� ,�, � iβ , which can
best answer our queries, while satisfying:

β�
k=�
�S(� ik ,K)� ≤ C

Speci�cally, inBlinkDB, wemaximize the followingmixed
integer linear program (MILP) in which j indexes over all
queries and i indexes over all possible column sets:

G =�
j
p j ⋅ y j ⋅ ∆(q j ,M) (�)

subject to
m�
i=� �S(� i ,K)� ⋅ zi ≤ C (�)

and

∀ j ∶ y j ≤ max
i∶� i⊆q j∪i∶� i⊃q j

(zi min �,
�D(� i)��D(q j)�) (�)

where � ≤ y j ≤ � and zi ∈ {�, �} are variables.
Here, zi is a binary variable determiningwhether a sample

family should be built or not, i.e., when zi = �, we build a
sample family on � i ; otherwise, when zi = �, we do not.

�e goal function (�) aims to maximize the weighted sum
of the coverage of the QCSs of the queries, q j . If we create a
strati�ed sample S(� i ,K), the coverage of this sample for q j
is de�ned as the probability that a given value x of columns q j
is also present among the rows of S(� i ,K). If � i ⊇ q j , then q j
is covered exactly, but � i ⊂ q j can also be useful by partially
covering q j . At runtime, if no strati�ed sample is available that
exactly covers a theQCS for a query, a partially-coveringQCS
may be used instead. In particular, the uniform sample is a
degenerate case with � i = �; it is useful for many queries but
less useful than more targeted strati�ed samples.

Since the coverage probability is hard to compute in prac-
tice, in this paper we approximate it by y j , which is deter-
mined by constraint (�).�e y j value is in [�, �], with �mean-
ing no coverage, and � meaning full coverage. �e intuition
behind (�) is that when we build a strati�ed sample on a
subset of columns � i ⊆ q j , i.e. when zi = �, we have par-
tially covered q j , too. We compute this coverage as the ra-
tio of the number of unique values between the two sets, i.e.,

MILP	
 Formulation	

Maximize	

Cost	
 of	
 all	

Samples	

K

B1

B21

B22

B31

B32

B33

B41

B42

B51

B52

B6 B7 B8

B43

x

(a)

K

B1

B21

B22

B31

B32

B33

B51

B52

B6 B7 B8

B43

K1
B42

B41

x

(b)
Figure �. (a) Possible storage layout for strati�ed sample S(�,K).

dimensional strati�ed samples. As described above, each
strati�ed sample can potentially be used at runtime to im-
prove query accuracy and latency, especially when the orig-
inal table contains small groups for a particular column set.
However, each stored sample has a storage cost equal to its
size, and the number of potential samples is exponential in
the number of columns. As a result, we need to be careful
in choosing the set of column-sets on which to build strati-
�ed samples.We formulate the trade-o� between storage cost
and query accuracy/performance as an optimization prob-
lem, described next.

�.�.� Problem Formulation
�e optimization problem takes three factors into account in
determining the sets of columns on which strati�ed samples
should be built: the “sparsity” of the data,workload character-
istics, and the storage cost of samples.

Sparsity of the data. A strati�ed sample on � is useful when
the original table T contains many small groups under �.
Consider aQCS � in table T . Recall thatD(�) denotes the set
of all distinct values on columns � in rows of T . We de�ne a
“sparsity” function ∆(�,M) as the number of groups whose
size in T is less than some number M�:

∆(�,M) = �{x ∈ D(�) ∶ �Tx � < M}�
Workload.A strati�ed sample is only useful when it is bene-
�cial to actual queries. Under our model for queries, a query
has a QCS q j with some (unknown) probability p j - that is,
QCSs are drawn from aMultinomial (p� , p� , ...) distribution.
�e best estimate of p j is simply the frequency of queries with
QCS q j in past queries.

Storage cost. Storage is the main constraint against build-
ing too many strati�ed samples, and against building strat-
i�ed samples on large column sets that produce too many
groups. �erefore, we must compute the storage cost of po-
tential samples and constrain total storage. To simplify the
formulation, we assume a single value of K for all samples;
a sample family � either receives no samples or a full sam-
ple with K elements of Tx for each x ∈ D(�). �S(�,K)� is the
storage cost (in rows) of building a strati�ed sample on a set
of columns �.
�Appropriate values for M will be discussed later in this section. Alterna-
tively, one could plug in di�erent notions of sparsity of a distribution in our
formulation.

Given these three factors de�ned above, we now introduce
our optimization formulation. Let the overall storage capacity
budget (again in rows) be C. Our goal is to select β column
sets from among m possible QCSs, say � i� ,�, � iβ , which can
best answer our queries, while satisfying:

β�
k=�
�S(� ik ,K)� ≤ C

Speci�cally, inBlinkDB, wemaximize the followingmixed
integer linear program (MILP) in which j indexes over all
queries and i indexes over all possible column sets:

G =�
j
p j ⋅ y j ⋅ ∆(q j ,M) (�)

subject to
m�
i=� �S(� i ,K)� ⋅ zi ≤ C (�)

and

∀ j ∶ y j ≤ max
i∶� i⊆q j∪i∶� i⊃q j

(zi min �,
�D(� i)��D(q j)�) (�)

where � ≤ y j ≤ � and zi ∈ {�, �} are variables.
Here, zi is a binary variable determiningwhether a sample

family should be built or not, i.e., when zi = �, we build a
sample family on � i ; otherwise, when zi = �, we do not.

�e goal function (�) aims to maximize the weighted sum
of the coverage of the QCSs of the queries, q j . If we create a
strati�ed sample S(� i ,K), the coverage of this sample for q j
is de�ned as the probability that a given value x of columns q j
is also present among the rows of S(� i ,K). If � i ⊇ q j , then q j
is covered exactly, but � i ⊂ q j can also be useful by partially
covering q j . At runtime, if no strati�ed sample is available that
exactly covers a theQCS for a query, a partially-coveringQCS
may be used instead. In particular, the uniform sample is a
degenerate case with � i = �; it is useful for many queries but
less useful than more targeted strati�ed samples.

Since the coverage probability is hard to compute in prac-
tice, in this paper we approximate it by y j , which is deter-
mined by constraint (�).�e y j value is in [�, �], with �mean-
ing no coverage, and � meaning full coverage. �e intuition
behind (�) is that when we build a strati�ed sample on a
subset of columns � i ⊆ q j , i.e. when zi = �, we have par-
tially covered q j , too. We compute this coverage as the ra-
tio of the number of unique values between the two sets, i.e.,

MILP	
 Formulation	

Maximize	

Probability	
 of	
 each	
 Query	

Type	
 in	
 the	
 Workload	

K

B1

B21

B22

B31

B32

B33

B41

B42

B51

B52

B6 B7 B8

B43

x

(a)

K

B1

B21

B22

B31

B32

B33

B51

B52

B6 B7 B8

B43

K1
B42

B41

x

(b)
Figure �. (a) Possible storage layout for strati�ed sample S(�,K).

dimensional strati�ed samples. As described above, each
strati�ed sample can potentially be used at runtime to im-
prove query accuracy and latency, especially when the orig-
inal table contains small groups for a particular column set.
However, each stored sample has a storage cost equal to its
size, and the number of potential samples is exponential in
the number of columns. As a result, we need to be careful
in choosing the set of column-sets on which to build strati-
�ed samples.We formulate the trade-o� between storage cost
and query accuracy/performance as an optimization prob-
lem, described next.

�.�.� Problem Formulation
�e optimization problem takes three factors into account in
determining the sets of columns on which strati�ed samples
should be built: the “sparsity” of the data,workload character-
istics, and the storage cost of samples.

Sparsity of the data. A strati�ed sample on � is useful when
the original table T contains many small groups under �.
Consider aQCS � in table T . Recall thatD(�) denotes the set
of all distinct values on columns � in rows of T . We de�ne a
“sparsity” function ∆(�,M) as the number of groups whose
size in T is less than some number M�:

∆(�,M) = �{x ∈ D(�) ∶ �Tx � < M}�
Workload.A strati�ed sample is only useful when it is bene-
�cial to actual queries. Under our model for queries, a query
has a QCS q j with some (unknown) probability p j - that is,
QCSs are drawn from aMultinomial (p� , p� , ...) distribution.
�e best estimate of p j is simply the frequency of queries with
QCS q j in past queries.

Storage cost. Storage is the main constraint against build-
ing too many strati�ed samples, and against building strat-
i�ed samples on large column sets that produce too many
groups. �erefore, we must compute the storage cost of po-
tential samples and constrain total storage. To simplify the
formulation, we assume a single value of K for all samples;
a sample family � either receives no samples or a full sam-
ple with K elements of Tx for each x ∈ D(�). �S(�,K)� is the
storage cost (in rows) of building a strati�ed sample on a set
of columns �.
�Appropriate values for M will be discussed later in this section. Alterna-
tively, one could plug in di�erent notions of sparsity of a distribution in our
formulation.

Given these three factors de�ned above, we now introduce
our optimization formulation. Let the overall storage capacity
budget (again in rows) be C. Our goal is to select β column
sets from among m possible QCSs, say � i� ,�, � iβ , which can
best answer our queries, while satisfying:

β�
k=�
�S(� ik ,K)� ≤ C

Speci�cally, inBlinkDB, wemaximize the followingmixed
integer linear program (MILP) in which j indexes over all
queries and i indexes over all possible column sets:

G =�
j
p j ⋅ y j ⋅ ∆(q j ,M) (�)

subject to
m�
i=� �S(� i ,K)� ⋅ zi ≤ C (�)

and

∀ j ∶ y j ≤ max
i∶� i⊆q j∪i∶� i⊃q j

(zi min �,
�D(� i)��D(q j)�) (�)

where � ≤ y j ≤ � and zi ∈ {�, �} are variables.
Here, zi is a binary variable determiningwhether a sample

family should be built or not, i.e., when zi = �, we build a
sample family on � i ; otherwise, when zi = �, we do not.

�e goal function (�) aims to maximize the weighted sum
of the coverage of the QCSs of the queries, q j . If we create a
strati�ed sample S(� i ,K), the coverage of this sample for q j
is de�ned as the probability that a given value x of columns q j
is also present among the rows of S(� i ,K). If � i ⊇ q j , then q j
is covered exactly, but � i ⊂ q j can also be useful by partially
covering q j . At runtime, if no strati�ed sample is available that
exactly covers a theQCS for a query, a partially-coveringQCS
may be used instead. In particular, the uniform sample is a
degenerate case with � i = �; it is useful for many queries but
less useful than more targeted strati�ed samples.

Since the coverage probability is hard to compute in prac-
tice, in this paper we approximate it by y j , which is deter-
mined by constraint (�).�e y j value is in [�, �], with �mean-
ing no coverage, and � meaning full coverage. �e intuition
behind (�) is that when we build a strati�ed sample on a
subset of columns � i ⊆ q j , i.e. when zi = �, we have par-
tially covered q j , too. We compute this coverage as the ra-
tio of the number of unique values between the two sets, i.e.,

Cost	
 of	
 all	

Samples	

=	

K

B1

B21

B22

B31

B32

B33

B41

B42

B51

B52

B6 B7 B8

B43

x

(a)

K

B1

B21

B22

B31

B32

B33

B51

B52

B6 B7 B8

B43

K1
B42

B41

x

(b)
Figure �. (a) Possible storage layout for strati�ed sample S(�,K).

dimensional strati�ed samples. As described above, each
strati�ed sample can potentially be used at runtime to im-
prove query accuracy and latency, especially when the orig-
inal table contains small groups for a particular column set.
However, each stored sample has a storage cost equal to its
size, and the number of potential samples is exponential in
the number of columns. As a result, we need to be careful
in choosing the set of column-sets on which to build strati-
�ed samples.We formulate the trade-o� between storage cost
and query accuracy/performance as an optimization prob-
lem, described next.

�.�.� Problem Formulation
�e optimization problem takes three factors into account in
determining the sets of columns on which strati�ed samples
should be built: the “sparsity” of the data,workload character-
istics, and the storage cost of samples.

Sparsity of the data. A strati�ed sample on � is useful when
the original table T contains many small groups under �.
Consider aQCS � in table T . Recall thatD(�) denotes the set
of all distinct values on columns � in rows of T . We de�ne a
“sparsity” function ∆(�,M) as the number of groups whose
size in T is less than some number M�:

∆(�,M) = �{x ∈ D(�) ∶ �Tx � < M}�
Workload.A strati�ed sample is only useful when it is bene-
�cial to actual queries. Under our model for queries, a query
has a QCS q j with some (unknown) probability p j - that is,
QCSs are drawn from aMultinomial (p� , p� , ...) distribution.
�e best estimate of p j is simply the frequency of queries with
QCS q j in past queries.

Storage cost. Storage is the main constraint against build-
ing too many strati�ed samples, and against building strat-
i�ed samples on large column sets that produce too many
groups. �erefore, we must compute the storage cost of po-
tential samples and constrain total storage. To simplify the
formulation, we assume a single value of K for all samples;
a sample family � either receives no samples or a full sam-
ple with K elements of Tx for each x ∈ D(�). �S(�,K)� is the
storage cost (in rows) of building a strati�ed sample on a set
of columns �.
�Appropriate values for M will be discussed later in this section. Alterna-
tively, one could plug in di�erent notions of sparsity of a distribution in our
formulation.

Given these three factors de�ned above, we now introduce
our optimization formulation. Let the overall storage capacity
budget (again in rows) be C. Our goal is to select β column
sets from among m possible QCSs, say � i� ,�, � iβ , which can
best answer our queries, while satisfying:

β�
k=�
�S(� ik ,K)� ≤ C

Speci�cally, inBlinkDB, wemaximize the followingmixed
integer linear program (MILP) in which j indexes over all
queries and i indexes over all possible column sets:

G =�
j
p j ⋅ y j ⋅ ∆(q j ,M) (�)

subject to
m�
i=� �S(� i ,K)� ⋅ zi ≤ C (�)

and

∀ j ∶ y j ≤ max
i∶� i⊆q j∪i∶� i⊃q j

(zi min �,
�D(� i)��D(q j)�) (�)

where � ≤ y j ≤ � and zi ∈ {�, �} are variables.
Here, zi is a binary variable determiningwhether a sample

family should be built or not, i.e., when zi = �, we build a
sample family on � i ; otherwise, when zi = �, we do not.

�e goal function (�) aims to maximize the weighted sum
of the coverage of the QCSs of the queries, q j . If we create a
strati�ed sample S(� i ,K), the coverage of this sample for q j
is de�ned as the probability that a given value x of columns q j
is also present among the rows of S(� i ,K). If � i ⊇ q j , then q j
is covered exactly, but � i ⊂ q j can also be useful by partially
covering q j . At runtime, if no strati�ed sample is available that
exactly covers a theQCS for a query, a partially-coveringQCS
may be used instead. In particular, the uniform sample is a
degenerate case with � i = �; it is useful for many queries but
less useful than more targeted strati�ed samples.

Since the coverage probability is hard to compute in prac-
tice, in this paper we approximate it by y j , which is deter-
mined by constraint (�).�e y j value is in [�, �], with �mean-
ing no coverage, and � meaning full coverage. �e intuition
behind (�) is that when we build a strati�ed sample on a
subset of columns � i ⊆ q j , i.e. when zi = �, we have par-
tially covered q j , too. We compute this coverage as the ra-
tio of the number of unique values between the two sets, i.e.,

MILP	
 Formulation	

Maximize	

K

B1

B21

B22

B31

B32

B33

B41

B42

B51

B52

B6 B7 B8

B43

x

(a)

K

B1

B21

B22

B31

B32

B33

B51

B52

B6 B7 B8

B43

K1
B42

B41

x

(b)
Figure �. (a) Possible storage layout for strati�ed sample S(�,K).

dimensional strati�ed samples. As described above, each
strati�ed sample can potentially be used at runtime to im-
prove query accuracy and latency, especially when the orig-
inal table contains small groups for a particular column set.
However, each stored sample has a storage cost equal to its
size, and the number of potential samples is exponential in
the number of columns. As a result, we need to be careful
in choosing the set of column-sets on which to build strati-
�ed samples.We formulate the trade-o� between storage cost
and query accuracy/performance as an optimization prob-
lem, described next.

�.�.� Problem Formulation
�e optimization problem takes three factors into account in
determining the sets of columns on which strati�ed samples
should be built: the “sparsity” of the data,workload character-
istics, and the storage cost of samples.

Sparsity of the data. A strati�ed sample on � is useful when
the original table T contains many small groups under �.
Consider aQCS � in table T . Recall thatD(�) denotes the set
of all distinct values on columns � in rows of T . We de�ne a
“sparsity” function ∆(�,M) as the number of groups whose
size in T is less than some number M�:

∆(�,M) = �{x ∈ D(�) ∶ �Tx � < M}�
Workload.A strati�ed sample is only useful when it is bene-
�cial to actual queries. Under our model for queries, a query
has a QCS q j with some (unknown) probability p j - that is,
QCSs are drawn from aMultinomial (p� , p� , ...) distribution.
�e best estimate of p j is simply the frequency of queries with
QCS q j in past queries.

Storage cost. Storage is the main constraint against build-
ing too many strati�ed samples, and against building strat-
i�ed samples on large column sets that produce too many
groups. �erefore, we must compute the storage cost of po-
tential samples and constrain total storage. To simplify the
formulation, we assume a single value of K for all samples;
a sample family � either receives no samples or a full sam-
ple with K elements of Tx for each x ∈ D(�). �S(�,K)� is the
storage cost (in rows) of building a strati�ed sample on a set
of columns �.
�Appropriate values for M will be discussed later in this section. Alterna-
tively, one could plug in di�erent notions of sparsity of a distribution in our
formulation.

Given these three factors de�ned above, we now introduce
our optimization formulation. Let the overall storage capacity
budget (again in rows) be C. Our goal is to select β column
sets from among m possible QCSs, say � i� ,�, � iβ , which can
best answer our queries, while satisfying:

β�
k=�
�S(� ik ,K)� ≤ C

Speci�cally, inBlinkDB, wemaximize the followingmixed
integer linear program (MILP) in which j indexes over all
queries and i indexes over all possible column sets:

G =�
j
p j ⋅ y j ⋅ ∆(q j ,M) (�)

subject to
m�
i=� �S(� i ,K)� ⋅ zi ≤ C (�)

and

∀ j ∶ y j ≤ max
i∶� i⊆q j∪i∶� i⊃q j

(zi min �,
�D(� i)��D(q j)�) (�)

where � ≤ y j ≤ � and zi ∈ {�, �} are variables.
Here, zi is a binary variable determiningwhether a sample

family should be built or not, i.e., when zi = �, we build a
sample family on � i ; otherwise, when zi = �, we do not.

�e goal function (�) aims to maximize the weighted sum
of the coverage of the QCSs of the queries, q j . If we create a
strati�ed sample S(� i ,K), the coverage of this sample for q j
is de�ned as the probability that a given value x of columns q j
is also present among the rows of S(� i ,K). If � i ⊇ q j , then q j
is covered exactly, but � i ⊂ q j can also be useful by partially
covering q j . At runtime, if no strati�ed sample is available that
exactly covers a theQCS for a query, a partially-coveringQCS
may be used instead. In particular, the uniform sample is a
degenerate case with � i = �; it is useful for many queries but
less useful than more targeted strati�ed samples.

Since the coverage probability is hard to compute in prac-
tice, in this paper we approximate it by y j , which is deter-
mined by constraint (�).�e y j value is in [�, �], with �mean-
ing no coverage, and � meaning full coverage. �e intuition
behind (�) is that when we build a strati�ed sample on a
subset of columns � i ⊆ q j , i.e. when zi = �, we have par-
tially covered q j , too. We compute this coverage as the ra-
tio of the number of unique values between the two sets, i.e.,

Coverage	
 Probability	
 of	
 each	

query	
 Type	

Cost	
 of	
 all	

Samples	

K

B1

B21

B22

B31

B32

B33

B41

B42

B51

B52

B6 B7 B8

B43

x

(a)

K

B1

B21

B22

B31

B32

B33

B51

B52

B6 B7 B8

B43

K1
B42

B41

x

(b)
Figure �. (a) Possible storage layout for strati�ed sample S(�,K).

dimensional strati�ed samples. As described above, each
strati�ed sample can potentially be used at runtime to im-
prove query accuracy and latency, especially when the orig-
inal table contains small groups for a particular column set.
However, each stored sample has a storage cost equal to its
size, and the number of potential samples is exponential in
the number of columns. As a result, we need to be careful
in choosing the set of column-sets on which to build strati-
�ed samples.We formulate the trade-o� between storage cost
and query accuracy/performance as an optimization prob-
lem, described next.

�.�.� Problem Formulation
�e optimization problem takes three factors into account in
determining the sets of columns on which strati�ed samples
should be built: the “sparsity” of the data,workload character-
istics, and the storage cost of samples.

Sparsity of the data. A strati�ed sample on � is useful when
the original table T contains many small groups under �.
Consider aQCS � in table T . Recall thatD(�) denotes the set
of all distinct values on columns � in rows of T . We de�ne a
“sparsity” function ∆(�,M) as the number of groups whose
size in T is less than some number M�:

∆(�,M) = �{x ∈ D(�) ∶ �Tx � < M}�
Workload.A strati�ed sample is only useful when it is bene-
�cial to actual queries. Under our model for queries, a query
has a QCS q j with some (unknown) probability p j - that is,
QCSs are drawn from aMultinomial (p� , p� , ...) distribution.
�e best estimate of p j is simply the frequency of queries with
QCS q j in past queries.

Storage cost. Storage is the main constraint against build-
ing too many strati�ed samples, and against building strat-
i�ed samples on large column sets that produce too many
groups. �erefore, we must compute the storage cost of po-
tential samples and constrain total storage. To simplify the
formulation, we assume a single value of K for all samples;
a sample family � either receives no samples or a full sam-
ple with K elements of Tx for each x ∈ D(�). �S(�,K)� is the
storage cost (in rows) of building a strati�ed sample on a set
of columns �.
�Appropriate values for M will be discussed later in this section. Alterna-
tively, one could plug in di�erent notions of sparsity of a distribution in our
formulation.

Given these three factors de�ned above, we now introduce
our optimization formulation. Let the overall storage capacity
budget (again in rows) be C. Our goal is to select β column
sets from among m possible QCSs, say � i� ,�, � iβ , which can
best answer our queries, while satisfying:

β�
k=�
�S(� ik ,K)� ≤ C

Speci�cally, inBlinkDB, wemaximize the followingmixed
integer linear program (MILP) in which j indexes over all
queries and i indexes over all possible column sets:

G =�
j
p j ⋅ y j ⋅ ∆(q j ,M) (�)

subject to
m�
i=� �S(� i ,K)� ⋅ zi ≤ C (�)

and

∀ j ∶ y j ≤ max
i∶� i⊆q j∪i∶� i⊃q j

(zi min �,
�D(� i)��D(q j)�) (�)

where � ≤ y j ≤ � and zi ∈ {�, �} are variables.
Here, zi is a binary variable determiningwhether a sample

family should be built or not, i.e., when zi = �, we build a
sample family on � i ; otherwise, when zi = �, we do not.

�e goal function (�) aims to maximize the weighted sum
of the coverage of the QCSs of the queries, q j . If we create a
strati�ed sample S(� i ,K), the coverage of this sample for q j
is de�ned as the probability that a given value x of columns q j
is also present among the rows of S(� i ,K). If � i ⊇ q j , then q j
is covered exactly, but � i ⊂ q j can also be useful by partially
covering q j . At runtime, if no strati�ed sample is available that
exactly covers a theQCS for a query, a partially-coveringQCS
may be used instead. In particular, the uniform sample is a
degenerate case with � i = �; it is useful for many queries but
less useful than more targeted strati�ed samples.

Since the coverage probability is hard to compute in prac-
tice, in this paper we approximate it by y j , which is deter-
mined by constraint (�).�e y j value is in [�, �], with �mean-
ing no coverage, and � meaning full coverage. �e intuition
behind (�) is that when we build a strati�ed sample on a
subset of columns � i ⊆ q j , i.e. when zi = �, we have par-
tially covered q j , too. We compute this coverage as the ra-
tio of the number of unique values between the two sets, i.e.,

MILP	
 Formulation	

Maximize	

Sparsity	

FuncEon	

Cost	
 of	
 all	

Samples	

K

B1

B21

B22

B31

B32

B33

B41

B42

B51

B52

B6 B7 B8

B43

x

(a)

K

B1

B21

B22

B31

B32

B33

B51

B52

B6 B7 B8

B43

K1
B42

B41

x

(b)
Figure �. (a) Possible storage layout for strati�ed sample S(�,K).

dimensional strati�ed samples. As described above, each
strati�ed sample can potentially be used at runtime to im-
prove query accuracy and latency, especially when the orig-
inal table contains small groups for a particular column set.
However, each stored sample has a storage cost equal to its
size, and the number of potential samples is exponential in
the number of columns. As a result, we need to be careful
in choosing the set of column-sets on which to build strati-
�ed samples.We formulate the trade-o� between storage cost
and query accuracy/performance as an optimization prob-
lem, described next.

�.�.� Problem Formulation
�e optimization problem takes three factors into account in
determining the sets of columns on which strati�ed samples
should be built: the “sparsity” of the data,workload character-
istics, and the storage cost of samples.

Sparsity of the data. A strati�ed sample on � is useful when
the original table T contains many small groups under �.
Consider aQCS � in table T . Recall thatD(�) denotes the set
of all distinct values on columns � in rows of T . We de�ne a
“sparsity” function ∆(�,M) as the number of groups whose
size in T is less than some number M�:

∆(�,M) = �{x ∈ D(�) ∶ �Tx � < M}�
Workload.A strati�ed sample is only useful when it is bene-
�cial to actual queries. Under our model for queries, a query
has a QCS q j with some (unknown) probability p j - that is,
QCSs are drawn from aMultinomial (p� , p� , ...) distribution.
�e best estimate of p j is simply the frequency of queries with
QCS q j in past queries.

Storage cost. Storage is the main constraint against build-
ing too many strati�ed samples, and against building strat-
i�ed samples on large column sets that produce too many
groups. �erefore, we must compute the storage cost of po-
tential samples and constrain total storage. To simplify the
formulation, we assume a single value of K for all samples;
a sample family � either receives no samples or a full sam-
ple with K elements of Tx for each x ∈ D(�). �S(�,K)� is the
storage cost (in rows) of building a strati�ed sample on a set
of columns �.
�Appropriate values for M will be discussed later in this section. Alterna-
tively, one could plug in di�erent notions of sparsity of a distribution in our
formulation.

Given these three factors de�ned above, we now introduce
our optimization formulation. Let the overall storage capacity
budget (again in rows) be C. Our goal is to select β column
sets from among m possible QCSs, say � i� ,�, � iβ , which can
best answer our queries, while satisfying:

β�
k=�
�S(� ik ,K)� ≤ C

Speci�cally, inBlinkDB, wemaximize the followingmixed
integer linear program (MILP) in which j indexes over all
queries and i indexes over all possible column sets:

G =�
j
p j ⋅ y j ⋅ ∆(q j ,M) (�)

subject to
m�
i=� �S(� i ,K)� ⋅ zi ≤ C (�)

and

∀ j ∶ y j ≤ max
i∶� i⊆q j∪i∶� i⊃q j

(zi min �,
�D(� i)��D(q j)�) (�)

where � ≤ y j ≤ � and zi ∈ {�, �} are variables.
Here, zi is a binary variable determiningwhether a sample

family should be built or not, i.e., when zi = �, we build a
sample family on � i ; otherwise, when zi = �, we do not.

�e goal function (�) aims to maximize the weighted sum
of the coverage of the QCSs of the queries, q j . If we create a
strati�ed sample S(� i ,K), the coverage of this sample for q j
is de�ned as the probability that a given value x of columns q j
is also present among the rows of S(� i ,K). If � i ⊇ q j , then q j
is covered exactly, but � i ⊂ q j can also be useful by partially
covering q j . At runtime, if no strati�ed sample is available that
exactly covers a theQCS for a query, a partially-coveringQCS
may be used instead. In particular, the uniform sample is a
degenerate case with � i = �; it is useful for many queries but
less useful than more targeted strati�ed samples.

Since the coverage probability is hard to compute in prac-
tice, in this paper we approximate it by y j , which is deter-
mined by constraint (�).�e y j value is in [�, �], with �mean-
ing no coverage, and � meaning full coverage. �e intuition
behind (�) is that when we build a strati�ed sample on a
subset of columns � i ⊆ q j , i.e. when zi = �, we have par-
tially covered q j , too. We compute this coverage as the ra-
tio of the number of unique values between the two sets, i.e.,

=	

Experimental	
 Setup	

•  Conviva:	
 30-­‐day	
 log	
 of	
 media	
 accesses	
 by	

Conviva	
 users.	
 Raw	
 data	
 17	
 TB,	
 partitioned	

this	
 data	
 across	
 100	
 nodes	

•  Log	
 of	
 17,000	
 queries	
 (a	
 sample	
 of	
 200	

queries	
 had	
 17	
 templates).	
 	

•  50%	
 of	
 storage	
 budget:	
 8	
 Stratified	
 Samples	













 

























Sampling	
 Vs.	
 No	
 Sampling	

Fully
Cached
Partially
Cached













 

























BlinkDB:	
 Evaluation	













 

























BlinkDB:	
 Evaluation	

200-300x
Faster!

Response	
 Time	
 vs.	
 Error	













       
















Time	
 Guarantees	















        























Error	
 Guarantees	











     













Related	
 Work	

Flexibility

Efficiency
Low flexibility /
High Efficiency

High flexibility /
Low Efficiency

Predictable++
Queries+

Predictable++
Access+
Patterns+

Predictable++
Query+
Column+Sets+

Unpredictable++
Queries+

Sketches,	

Wavelets,	

Histograms,	

Join	
 Synopses	

STRAT	

SciBORQ	

AQUA	

BlinkDB	

OLA	

Taxonomy	
 of	
 Workload	
 Models

BlinkDB	
 is	
 Open	
 Sourced!	

hqp://blinkdb.org	

Deployed	
 and	
 used	
 by	

Integrated	
 into	
 Presto	

Conclusion	

•  ApproximaIon	
 is	
 an	
 important	
 means	
 to	

achieve	
 interacIvity	
 in	
 the	
 big	
 data	
 age	

•  Ad-­‐hoc	
 exploratory	
 queries	
 on	
 an	

opImal	
 set	
 of	
 mulI-­‐dimensional	

straIfied	
 samples	
 converges	
 to	
 lower	

errors	
 2-­‐3	
 orders	
 of	
 magnitude	
 faster	

than	
 non-­‐opImal	
 strategies	

References	

•  Blink	
 and	
 It's	
 Done:	
 Interactive	
 Queries	
 on	
 Very	

Large	
 Data,	
 S.	
 Agarwal,	
 A.	
 Panda,	
 B.	
 Mozafari,	
 A.	

Iyer,	
 S.	
 Madden,	
 I.	
 Stoica,	
 VLDB	
 2012	
 demo	

•  BlinkDB:	
 Queries	
 with	
 Bounded	
 Errors	
 and	

Bounded	
 Response	
 Times	
 on	
 Very	
 Large	
 Data,	
 S.	

Agarwal,	
 B.	
 Mozafari,	
 A.	
 Panda,	
 H.	
 Milner,	
 S.	

Madden,	
 I.	
 Stoica,	
 EuroSys	
 2013	
 [Best	
 Paper	
 Award]	
 	

•  The	
 Analytical	
 Bootstrap:	
 A	
 New	
 Method	
 for	
 Fast	

Error	
 Estimation	
 in	
 Approximate	
 Query	

Processing,	
 K.	
 Zeng,	
 G.	
 Shi,	
 B.	
 Mozafari,	
 C.	
 Zaniolo,	

under	
 submission	

Backup	
 Slides	

