BlinkDB: Query Petabytes of Data in a Blink Time!

Barzan Mozafari University of Michigan, Ann Arbor

Collaborators

-amplab// Sameer Agarwal UC Berkeley Aurojit Panda

Henry Milner

Ion Stoica

Samuel Madden

My Research ...

Using statistics to build better dataintensive systems

1. More predictable

- > How to predict resources in a DB?
- How to design a more predictable DB?

2. More scalable

How to scale crowdsourcing?

How to query petabytes of data in seconds?

Google

Big Data

Online Media Websites

Real-time Ad-performance, Spam Detection

Big Data Log Processing Root-cause Analysis, A/B Testing

Overview

Problem: Need to compute aggregate statistics over massive sets of data

Our Goal: Support interactive ad-hoc analytical queries over these large datasets

100 TB on 1000 machines

1. Real-time latency is valued over perfect accuracy

"On a good day, I can run up to 6 queries in Hive." - Anonymous Data Scientist at **facebook**.

 Real-time latency is valued over perfect accuracy: ≤ 10 sec for interactive experience

"On a good day, I can run up to 6 queries in Hive." - Anonymous Data Scientist at **facebook**.

- Real-time latency is valued over perfect accuracy: ≤ 10 sec for interactive experience
- 2. Exploration is **ad-hoc**
- Columns queried together (i.e., Templates) are stable over time

1. Real-time latency is valued over perfect

1. Real-time latency is valued over perfect

- Real-time latency is valued over perfect accuracy: ≤ 10 sec for interactive experience
- 2. Exploration is **ad-hoc**
- Columns queried together (i.e., Templates) are stable over time
- 4. User defined functions (UDF) must be supported: 43.6% of Conviva's queries
- 5. Data is high-dimensional & skewed: +100 columns

100 TB on 1000 machines

Hard Disks Memory

One can often make perfect decision without perfect answers

Approximation using **Offline** Samples

BlinkDB Interface

SELECT avg(sessionTime)

FROM Table

WHERE city='San Francisco'

WITHIN 1 SECONDS

 \rightarrow

234.23 ± 15.32

BlinkDB Interface

SELECT avg(sessionTime)

FROM Table

WHERE city='San Francisco'

WITHIN 2 SECONDS

234.23 ± 15.32 239.46 ± 4.96

SELECT avg(sessionTime) FROM Table WHERE city='San Francisco' ERROR 0.1 CONFIDENCE 95.0%

BlinkDB Architecture

Offline sampling: » **Uniform**

- » Stratified on
 - different sets of
 - columns
- » Different sizes

BlinkDB Architecture

BlinkDB Architecture

Three Key Sets of Challenges

- 1. How to accurately estimate the error?
 - What about UDFs? (43.6% of Conviva queries)
 - What if the error estimate itself is wrong?
- Given a storage budget, which samples to build & maintain to support a wide range of ad-hoc exploratory queries?
- 3. Given a query, what should be the optimal sample type and size that can be processed to meet its constraints?

Closed-Form Error Estimates

Central Limit Theorem (CLT)

- 1. Count: N(np, n(1-p)p)
- 2. Sum: $N(np\mu, np(\sigma^2 + (1-p)\mu^2))$
- 3. Mean: $N(\mu, \sigma^2/n)$
- 4. Variance: $N(\sigma^2, (\mu_4 \sigma^4)/n)$
- 5. Stddev: $N(\sigma, (\mu_4 \sigma^4)/(4\sigma^2 n))$

What about more complex queries? → UDFs, nested queries, joins, ...

Bootstrap [Efron 1979]

Quantify accuracy of a sample estimator f()

Bootstrap

Quantify accuracy of a query on a sample table

Bootstrap

- 1. Bootstrap treats Q as a **black-box**
 - Can handle (almost) arbitrarily complex queries including UDFs!
- 2. Embarrassingly Parallel

Error Estimation

- 1. CLT-based closed forms:
- Fast but limited to simple aggregates
- 2. Bootstrap (Monte Carlo simulation):
- Expensive but general
- 3. Analytical Bootstrap Method (ABM):
- Fast and general
 - ✓ (some restrictions, e.g. no UDF, some self joins, …)

Analytical Bootstrap Method* Key Idea:

- 1. Annotate tuples w/ integer random variables
 - > *Probabilistic* Multiset Database
- 2. Extend relational operators to manipulate these random variables
- 3. Use a single execution to estimate the empirical distribution

* The Analytical Bootstrap: A New Method for Fast Error Estimation in Approximate Query Processing, K. Zeng, G. Shi, B. Mozafari, C. Zaniolo, under submission

TPC-H Experiment

ABM is 2-4 orders of magnitude faster than simulation-based implementations of bootstrap

Three Key Sets of Challenges

- 1. How to accurately estimate the error?
 - What about UDFs? (43.6% of Conviva queries)
 - What if the error estimate itself is wrong?
- 2. Given a storage budget, which samples to build & maintain to support a wide range of ad-hoc exploratory queries?
- 3. Given a query, what should be the optimal sample type and size that can be processed to meet its constraints?

Problem with Uniform Samples

ID	City	Age	Salary	→
1	NYC	22	50,000	
2	Ann Arbor	25	120,242	
3	NYC	25	78,212	
4	NYC	67	62,492	
5	NYC	34	98,341	
6	Ann Arbor	62	78,453	

Uniform Sample

ID	City	Age	Salary	Sampling Rate
3	NYC	25	78,212	1/3
5	NYC	34	98,341	1/3

SELECT avg(salary) FROM table WHERE city = 'Ann Arbor'

Problem with Uniform Samples

ID	City	Age	Salary)
1	NYC	22	50,000	
2	Ann Arbor	25	120,242	
3	NYC	25	78,212	
4	NYC	67	62,492	
5	NYC	34	98,341	
6	Ann Arbor	62	78,453	

Larger Uniform Sample

ID	City	Age	Salary	Sampling Rate
3	NYC	25	78,212	2/3
5	NYC	34	98,341	2/3
1	NYC	22	50,000	2/3
2	Ann Arbor	25	120,242	2/3

SELECT avg(salary) FROM table WHERE city = 'Ann Arbor'

Stratified Samples

Stratified Sample on City

ID	City	Age	Salary	→
1	NYC	22	50,000	
2	Ann Arbor	25	120,242	
3	NYC	25	78,212	
4	NYC	67	62,492	
5	NYC	34	98,341	
6	Ann Arbor	62	78,453	

ID	City	Age	Salary	Sampling Rate
3	NYC	67	62,492	1/4
5	Ann Arbor	25	120,242	1/2

SELECT avg(salary) FROM table WHERE city = 'Ann Arbor' AND age > 60

- Real-time latency is valued over perfect accuracy: ≤ 10 sec for interactive experience
- 2. Exploration is **ad-hoc**
- 3. Columns queried together (i.e., **Templates**) are **stable** over time
- 4. User defined functions (UDF) must be supported: 43.6% of Conviva's queries
- 5. Data is high-dimensional & skewed: +100 columns

Which Stratified Samples to Build?

For **n** columns, **2**^{**n**} possible stratified samples

Modern data warehouses: n ≈ 100-200

Our solution: Choosing the best set of samples by considering

- 1. Columns queried together
- 2. Data distribution
- 3. Storage costs

Optimal Set of Samples

ID	City	Age	Salary
1	NYC	25	50,000
2	NYC	35	62,492
3	Ann Arbor	35	78,212
4	NYC	25	120,242
5	NYC	35	98,341
6	Berkeley	25	75,453
7	NYC	25	60,000
8	NYC	35	72,492
9	Berkeley	45	88,212
10	Berkeley	35	92,242
11	NYC	35	70,000
12	Ann Arbor	45	102,492

[City, Age, Salary]

SELECT AVG (...) FROM Table WHERE Age = x

[City, Salary]

[City, Age, Salary]

Cost of Stratification

ID	City	Age	Salary
1	NYC	25	50,000
2	NYC	25	80,000
3	Ann Arbor	35	80,000
4	NYC	25	120,000
5	NYC	25	80,000
6	Berkeley	25	80,000
7	NYC	25	60,000
8	NYC	25	70,000
9	Berkeley	30	80,000
10	Berkeley	25	90,000
11	NYC	40	80,000
12	Ann Arbor	45	100,000

Stratified Sample on [City]

ID	City	Age	Salary	Ratio
1	NYC	25	50,000	2/7
8	NYC	35	70,000	2/7
6	Berkeley	25	80,000	2/3
10	Berkeley	25	90,000	2/3
3	Ann Arbor	35	80,000	1
12	Ann Arbor	45	100,000	1

Cost = 6

Cost of Stratification

ID	City	Age	Salary
1	NYC	25	50,000
2	NYC	25	80,000
3	Ann Arbor	35	80,000
4	NYC	25	120,000
5	NYC	25	80,000
6	Berkeley	25	80,000
7	NYC	25	60,000
8	NYC	25	70 , 000
9	Berkeley	30	80,000
10	Berkeley	25	90,000
11	NYC	40	80,000
12	Ann Arbor	45	100,000

Stratified Sample on [Salary]

ID	City	Age	Salary	Ratio
1	NYC	25	50,000	1
7	NYC	25	60,000	1
8	NYC	25	70,000	1
3	Ann Arbor	35	80,000	1/3
9	Berkeley	30	80,000	1/3
10	Berkeley	25	90,000	1
12	Ann Arbor	45	100,000	1
4	NYC	25	120,000	1

Cost = 8

Maximize

$$G = \sum_{j} p_{j} \cdot y_{j} \cdot \Delta(q_{j}, M)$$

subject to

$$\sum_{i=1}^{m} |S(\phi_i, K)| \cdot z_i \leq \mathbb{C}$$

Maximize

$$G = \sum_{j} p_{j} \cdot y_{j} \cdot \Delta(q_{j}, M)$$

subject to

Maximize

$$G = \sum_{j} p_{j} \cdot y_{j} \cdot \Delta(q_{j}, M)$$

subject to

$$\underbrace{\sum_{i=1}^{m} \mathbf{Cost of all}}_{i=\mathbf{Samples}} | \cdot z_i \leq \mathbb{C}$$

p_j = **Probability of each Query Type in the Workload**

Maximize

$$G = \sum_{j} p_{j} \cdot y_{j} \cdot \Delta(q_{j}, M)$$

subject to

$$\sum_{i=\text{Samples}}^{m} |z_i < \mathbb{C}$$

 $\forall j: y_j \leq \frac{\text{Coverage Probability of each}}{i:\phi_i \subseteq q_j \cup i:\phi_i \supseteq \text{query Type}(q_j)}$

Maximize (

$$G = \sum_{j} p_{j} \cdot y_{j} \cdot \Delta(q_{j}, M)$$

subject to

$$\sum_{i=\text{Samples}}^{m} |z_i| \leq \mathbb{C}$$

$$\Delta(q_j, M) = \frac{\text{Sparsity}}{\text{Function}}$$

Experimental Setup

- **Conviva**: 30-day log of media accesses by Conviva users. Raw data 17 TB, partitioned this data across 100 nodes
- Log of 17,000 queries (a sample of 200 queries had 17 templates).
- 50% of storage budget: 8 Stratified Samples

Sampling Vs. No Sampling

BlinkDB: Evaluation

BlinkDB: Evaluation

Response Time vs. Error

Time Guarantees

Error Guarantees

Related Work

Taxonomy of Workload Models

BlinkDB is Open Sourced!

http://blinkdb.org

Deployed and used by facebook.

Integrated into Presto

Conclusion

- Approximation is an important means to achieve interactivity in the big data age
- Ad-hoc exploratory queries on an optimal set of multi-dimensional stratified samples converges to lower errors 2-3 orders of magnitude faster than non-optimal strategies

References

- Blink and It's Done: Interactive Queries on Very Large Data, S. Agarwal, A. Panda, B. Mozafari, A. Iyer, S. Madden, I. Stoica, VLDB 2012 demo
- BlinkDB: Queries with Bounded Errors and Bounded Response Times on Very Large Data, S.
 Agarwal, B. Mozafari, A. Panda, H. Milner, S.
 Madden, I. Stoica, EuroSys 2013 [Best Paper Award]
- The Analytical Bootstrap: A New Method for Fast Error Estimation in Approximate Query Processing, K. Zeng, G. Shi, B. Mozafari, C. Zaniolo, under submission

Backup Slides