
Query	 Petabytes	 of	 Data	 in	 a	
Blink	 Time!	

Barzan	 Mozafari	
University	 of	 Michigan,	 Ann	 Arbor	

BlinkDB:	

Collaborators	
Sameer	 Agarwal	

Aurojit	 Panda	

Henry	 Milner	

Ion	 Stoica	

	

Samuel	 Madden	

UC	 Berkeley	

My	 Research	 …	
Using	 statistics	 to	 build	 better	 data-‐
intensive	 systems	

1.   More	 predictable	
Ø How	 to	 predict	 resources	 in	 a	 DB?	
Ø How	 to	 design	 a	 more	 predictable	 DB?	

2.   More	 scalable	
Ø How	 to	 scale	 crowdsourcing?	
Ø How	 to	 query	 petabytes	 of	 data	 in	 seconds?	

Online	 Media	 Websites	
Real-‐Ime	 Ad-‐performance,	 Spam	 DetecIon	

Big	 Data	

Log	 Processing	 	
Root-‐cause	 Analysis,	 A/B	 TesIng	

Big	 Data	

Overview	
Problem:	 	 Need	 to	 compute	 aggregate	 staIsIcs	
over	 massive	 sets	 of	 data	

	

Our	 Goal:	 Support	 interacIve	 ad-‐hoc	 analyIcal	
queries	 over	 these	 large	 datasets	

Hard	 Disks	

1-‐2	 Hours	 25-‐30	 Minutes	 1	 second	

?	
Memory	

100	 TB	 on	 1000	 machines	

Target	 Workload	
1.   Real-‐Eme	 latency	 is	 valued	 over	 perfect	

accuracy	

“On a good day, I can run up to 6
queries in Hive.”
- Anonymous Data Scientist at

Target	 Workload	
1.   Real-‐Eme	 latency	 is	 valued	 over	 perfect	

accuracy:	 ≤	 10	 sec	 for	 interacEve	 experience	

	

“On a good day, I can run up to 6
queries in Hive.”
- Anonymous Data Scientist at

Target	 Workload	
1.   Real-‐Eme	 latency	 is	 valued	 over	 perfect	

accuracy:	 ≤	 10	 sec	 for	 interacEve	 experience	

2.  ExploraIon	 is	 ad-‐hoc	

3.  Columns	 queried	 together	 (i.e.,	 Templates)	 are	
stable	 over	 Ime	

	

1.   Real-‐Eme	 latency	 is	 valued	 over	 perfect	
accuracy:	 ≤	 10	 sec	 for	 interacEve	 experience	

2.  ExploraIon	 is	 ad-‐hoc	

3.  Columns	 queried	 together	 (i.e.,	 Templates)	 are	
stable	 over	 Ime	

	

68,785	 Queries	 ≈	 211	 Templates	

90%	 Queries	 ≈	 20%	 Templates	

Target	 Workload	

Target	 Workload	
1.   Real-‐Eme	 latency	 is	 valued	 over	 perfect	

accuracy:	 ≤	 10	 sec	 for	 interacEve	 experience	

2.  ExploraIon	 is	 ad-‐hoc	

3.  Columns	 queried	 together	 (i.e.,	 Templates)	 are	
stable	 over	 Ime	

	

17,437	 Queries	 ≈	 108	 Templates	

90%	 Queries	 ≈	 10%	 Templates	

Target	 Workload	
1.   Real-‐Eme	 latency	 is	 valued	 over	 perfect	

accuracy:	 ≤	 10	 sec	 for	 interacEve	 experience	

2.  ExploraIon	 is	 ad-‐hoc	

3.  Columns	 queried	 together	 (i.e.,	 Templates)	 are	
stable	 over	 Ime	

4.  User	 defined	 funcIons	 (UDF)	 must	 be	
supported:	 43.6%	 of	 Conviva’s	 queries	 	

5.  Data	 is	 high-‐dimensional	 &	 skewed:	 +100	
columns	

Hard	 Disks	

1-‐2	 Hours	 25-‐30	 Minutes	 1	 second	

?	
Memory	

100	 TB	 on	 1000	 machines	

One	 can	 ocen	 make	 perfect	 decision	 without	
perfect	 answers	 	

ApproximaIon	 Sampling-‐based	 ApproximaIon	 ApproximaIon	 using	 Offline	 Samples	

SELECT	 avg(sessionTime)	 	
FROM	 Table	 	
WHERE	 city=‘San	 Francisco’	
WITHIN	 1	 SECONDS	 234.23	 ±	 15.32	

BlinkDB	 Interface	

SELECT	 avg(sessionTime)	 	
FROM	 Table	 	
WHERE	 city=‘San	 Francisco’	
WITHIN	 2	 	 SECONDS	 239.46	 ±	 4.96	

SELECT	 avg(sessionTime)	 	
FROM	 Table	 	
WHERE	 city=‘San	 Francisco’	
ERROR	 0.1	 CONFIDENCE	 95.0%	

234.23	 ±	 15.32	

BlinkDB	 Interface	

BlinkDB	 Architecture	

…

…

…

…

…

…

Offline	 sampling:	
» Uniform	
» Stratified	 on	
different	 sets	 of	
columns	
» Different	 sizes	

TABLE	

Original	 	
Data	

In-‐Memory	
Samples	

On-‐Disk	
Samples	

Sa
m
pl
in
g	
M
od

ul
e	

BlinkDB	 Architecture	
Sa

m
pl
in
g	
M
od

ul
e	 …	

…	

…	

…	

…	

…	

Predict	 time	
and	 error	 of	 the	
query	 for	 each	
sample	 type	

TABLE	

Original	 	
Data	

In-‐Memory	
Samples	

On-‐Disk	
Samples	

	
SELECT	 	 foo	 (*)	
FROM	 TABLE	
IN	 TIME	 2	 SECONDS	

Query	 Plan	

Sample	 Selection	

BlinkDB	 Architecture	
Sa

m
pl
in
g	
M
od

ul
e	

…

…

…

…

…

…

In-‐Memory	
Samples	

On-‐Disk	
Samples	

Error	 Bars	 &	
Confidence	 Intervals	

Result	
182.23	 ±	 5.56	

(95%	 confidence)	

Parallel	
execution	

TABLE	

Original	 	
Data	

New	 Query	 Plan	

Sample	 Selection	

	
SELECT	 	 foo	 (*)	
FROM	 TABLE	
IN	 TIME	 2	 SECONDS	

Hive	
Hadoop	 Spark	 Presto	

1.  How	 to	 accurately	 estimate	 the	 error?	
-  What	 about	 UDFs?	 (43.6%	 of	 Conviva	 queries)	
-  What	 if	 the	 error	 estimate	 itself	 is	 wrong?	

2.  Given	 a	 storage	 budget,	 which	 samples	 to	
build	 &	 maintain	 to	 support	 a	 wide	 range	 of	
ad-‐hoc	 exploratory	 queries?	

3.  Given	 a	 query,	 what	 should	 be	 the	 optimal	
sample	 type	 and	 size	 that	 can	 be	 processed	
to	 meet	 its	 constraints?	

Three	 Key	 Sets	 of	 Challenges	

Closed-‐Form	 Error	 Estimates	

Closed form approximations to variance of sample

estimators for BlinkDB

Henry Milner

04/06/13

Notation:

1. µ = E[X]

2. µk is the kth central moment of the underlying distribution, E[(X�E[X])

k
]

(note that µ1 = 0, not µ)

3. �2
= µ2

2 is the variance of the underlying distribution

4. p is the frequency of rows (the probability that a row matches the filter

predicate for the query)

The following results are (asymptotically in sample size) true, but not di-

rectly useful, since they depend on unknown properties of the underlying dis-

tribution. In all cases we just plug in the sample values. For example, instead

of µ we use

1
n

Pn
i=1 Xi where Xi is the ith sample value.

Note that for estimators other than sum and count, I assume no filtering

(p = 1). Filtering will increase variance a bit, or potentially a lot for extremely

selective queries (p = 0). I can compute the filtering-adjusted values if you like.

1. Count: N(np, n(1� p)p)

2. Sum: N(npµ, np(�2
+ (1� p)µ2

))

3. Mean: N(µ,�2/n)

4. Variance: N(�2, (µ4 � �4
)/n)

5. Stddev: N(�, (µ4 � �4
)/(4�2n))

1

What about more complex queries?
Ø  UDFs, nested queries, joins, ...

Central Limit Theorem (CLT)

Bootstrap	 [Efron	 1979]	
Quantify	 accuracy	 of	 a	 sample	 estimator	 	 f()

f (X)

S

random	
sample	

Distribution	 X

|S| = N f (S)

can’t	 compute	 f (X)
as	 we	 don’t	 have	 X

what	 is	 f(S)’s	 error?

S1

Sk

…
	

f (S1)

f (Sk)

…
	

|Si| = N

sampling	
with	 	

replacement	

• estimator:	 mean(f(Si))
• error,	 e.g.:	 stdev(f(Si))

Quantify	 accuracy	 of	 a	 query	 on	 a	 sample	 table

Q(T) Q(T) takes	 too	 long!

Q(S) what	 is	 Q(S)’s	 error?

sample	

|S| = N S

T Original	 	
Table	

Q (S1)

Q (Sk)

…
	

|Si| = N

sampling	
with	 	

replacement	

S1

Sk

…
	

Bootstrap	

• estimator:	 mean(f(Si))
• error,	 e.g.:	 stdev(f(Si))

Q (S1)

Q (Sk)

…
	 S1

Sk

…
	

Bootstrap	
1.  Bootstrap	 treats	 Q	 as	 a	 black-‐box	 	
Ø  Can	 handle	 (almost)	 arbitrarily	 complex	 queries	

including	 UDFs!	

2.   Embarrassingly	 Parallel	

Uses	 too	
many	
resources	 in	
the	 cluster	

Error	 EsEmaEon	
1.	 CLT-‐based	 closed	 forms:	
Ø  Fast	 but	 limited	 to	 simple	 aggregates	

2.	 Bootstrap	 (Monte	 Carlo	 simulation):	

Ø  Expensive	 but	 general	

3.	 Analytical	 Bootstrap	 Method	 (ABM):	

Ø  Fast	 and	 general	 	
ü  (some	 restrictions,	 e.g.	 no	 UDF,	 some	 self	 joins,	 ...)	

AnalyEcal	 Bootstrap	 Method*	
Key	 Idea:	

1.  Annotate	 tuples	 w/	 integer	 random	 variables	
Ø  Probabilistic	 Multiset	 Database	

2.  Extend	 relational	 operators	 to	 manipulate	
these	 random	 variables	 	

3.  Use	 a	 single	 execution	 to	 estimate	 the	
empirical	 distribution	 	

	

sum	 sum	

div	

filter1	 filter2	

y,	 ε2	 x,	 ε1	

S

Every	 error	 propagation	 step	 may	
introduce	 additional	 error	 	 	

r	 =	 x/y,	 ε	 =	 epr(ε1,	 ε2)	
* The Analytical Bootstrap: A New Method for Fast Error Estimation in Approximate
Query Processing, K. Zeng, G. Shi, B. Mozafari, C. Zaniolo, under submission

TPC-‐H	 Experiment	

10^-1
10^0
10^1
10^2
10^3
10^4
10^5
10^6

Q1 Q3 Q5 Q6 Q7 Q8 Q9 Q10
Q11

Q12
Q14

Q16
Q17

Q18
Q19

Q20
Q22

Ex
ec

ut
io

n
Ti

m
e(

S)

Bootstrap
BLB-10

ODM
ABM

10^-1
10^0
10^1
10^2
10^3
10^4
10^5
10^6

Q1 Q3 Q5 Q6 Q7 Q8 Q9 Q10
Q11

Q12
Q14

Q16
Q17

Q18
Q19

Q20
Q22

Ex
ec

ut
io

n
Ti

m
e(

S)

Bootstrap
BLB-10

ODM
ABM

ABM is 2-4 orders of magnitude faster than
simulation-based implementations of bootstrap

1.  How	 to	 accurately	 estimate	 the	 error?	
-  What	 about	 UDFs?	 (43.6%	 of	 Conviva	 queries)	
-  What	 if	 the	 error	 estimate	 itself	 is	 wrong?	

2.  Given	 a	 storage	 budget,	 which	 samples	 to	
build	 &	 maintain	 to	 support	 a	 wide	 range	 of	
ad-‐hoc	 exploratory	 queries?	

3.  Given	 a	 query,	 what	 should	 be	 the	 optimal	
sample	 type	 and	 size	 that	 can	 be	 processed	
to	 meet	 its	 constraints?	

Three	 Key	 Sets	 of	 Challenges	

Problem	 with	 Uniform	
Samples	

SELECT	 avg(salary)	
FROM	 table	
WHERE	 city	 =	 ‘Ann	 Arbor’	

ID	 City	 Age	 Salary	

1	 NYC	 22	 50,000	

2	 Ann	 Arbor	 25	 120,242	

3	 NYC	 25	 78,212	

4	 NYC	 67	 62,492	

5	 NYC	 34	 98,341	

6	 Ann	 Arbor	 62	 78,453	

Uniform	 Sample	
ID	 City	 Age	 Salary	 Sampling	

Rate	

3	 NYC	 25	 78,212	 1/3	

5	 NYC	 34	 98,341	 1/3	

ID	 City	 Age	 Salary	 Sampling	
Rate	

3	 NYC	 25	 78,212	 1/3	

5	 NYC	 34	 98,341	 1/3	

Problem	 with	 Uniform	
Samples	

Larger	
ID	 City	 Age	 Salary	 Sampling	

Rate	

3	 NYC	 25	 78,212	 2/3	

5	 NYC	 34	 98,341	 2/3	

1	 NYC	 22	 50,000	 2/3	

2	 Ann	 Arbor	 25	 120,242	 2/3	

ID	 City	 Age	 Salary	

1	 NYC	 22	 50,000	

2	 Ann	 Arbor	 25	 120,242	

3	 NYC	 25	 78,212	

4	 NYC	 67	 62,492	

5	 NYC	 34	 98,341	

6	 Ann	 Arbor	 62	 78,453	 SELECT	 avg(salary)	
FROM	 table	
WHERE	 city	 =	 ‘Ann	 Arbor’	

Uniform	 Sample	

Stratified	 Samples	

AND	 age	 >	 60	

Stratified Sample on City

ID	 City	 Age	 Salary	 Sampling	
Rate	

3	 NYC	 67	 62,492	 1/4	

5	 Ann	 Arbor	 25	 120,242	 1/2	

ID	 City	 Age	 Salary	

1	 NYC	 22	 50,000	

2	 Ann	 Arbor	 25	 120,242	

3	 NYC	 25	 78,212	

4	 NYC	 67	 62,492	

5	 NYC	 34	 98,341	

6	 Ann	 Arbor	 62	 78,453	 SELECT	 avg(salary)	
FROM	 table	
WHERE	 city	 =	 ‘Ann	 Arbor’	

Target	 Workload	
1.   Real-‐Eme	 latency	 is	 valued	 over	 perfect	

accuracy:	 ≤	 10	 sec	 for	 interacEve	 experience	

2.  ExploraIon	 is	 ad-‐hoc	

3.  Columns	 queried	 together	 (i.e.,	 Templates)	 are	
stable	 over	 Ime	

4.  User	 defined	 funcIons	 (UDF)	 must	 be	
supported:	 43.6%	 of	 Conviva’s	 queries	 	

5.  Data	 is	 high-‐dimensional	 &	 skewed:	 +100	
columns	

Which	 Stratified	 Samples	 to	 Build?	

For	 n	 columns,	 2n	 possible	 stratified	 samples	

Modern	 data	 warehouses:	 	 n	 ≈	 100-‐200	

Our	 solution:	 Choosing	 the	 best	 set	 of	
samples	 by	 considering	

1.  Columns	 queried	 together	

2. Data	 distribution	
3.  Storage	 costs	
	

	

OpEmal	 Set	 of	 Samples	
[City]	

ID	 City	 Age	 Salary	

1	 NYC	 25	 50,000	

2	 NYC	 35	 62,492	

3	 Ann	 Arbor	 35	 78,212	

4	 NYC	 25	 120,242	

5	 NYC	 35	 98,341	

6	 Berkeley	 25	 75,453	

7	 NYC	 25	 60,000	

8	 NYC	 35	 72,492	

9	 Berkeley	 45	 88,212	

10	 Berkeley	 35	 92,242	

11	 NYC	 35	 70,000	

12	 Ann	 Arbor	 45	 102,492	

[Age]	

[Salary]	

[City,	 Age]	

[Age,	 Salary]	

[City,	 Salary]	

[City,	 Age,	 Salary]	

[City]	

[Age]	

[Salary]	

[City,	 Age]	

[Age,	 Salary]	

[City,	 Salary]	

[City,	 Age,	 Salary]	

SELECT	 AVG	 (…)	
FROM	 Table	
WHERE	 Age	 =	 x	

Query	 Coverage	

Query	 Coverage	
[City]	

[Age]	

[Salary]	

[City,	 Age]	

[Age,	 Salary]	

[City,	 Salary]	

[City,	 Age,	 Salary]	

SELECT	 AVG	 (…)	
FROM	 Table	
WHERE	 Age	 =	 x	

0%	

100%	

0%	

100%	

100%	

0%	

100%	

Query	 Coverage	
[City]	

[Age]	

[Salary]	

[City,	 Age]	

[Age,	 Salary]	

[City,	 Salary]	

[City,	 Age,	 Salary]	

SELECT	 AVG	 (…)	
FROM	 Table	
WHERE	 Age	 =	 x	 	 AND	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 City	 =	 z	 	

Query	 Coverage	
[City]	

[Age]	

[Salary]	

[City,	 Age]	

[Age,	 Salary]	

[City,	 Salary]	

[City,	 Age,	 Salary]	

SELECT	 AVG	 (…)	
FROM	 Table	
WHERE	 Age	 =	 x	 	 AND	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 City	 =	 z	 	

100%	

100%	

Query	 Coverage	
[City]	

[Age]	

[Salary]	

[City,	 Age]	

[Age,	 Salary]	

[City,	 Salary]	

[City,	 Age,	 Salary]	

SELECT	 AVG	 (…)	
FROM	 Table	
WHERE	 Age	 =	 x	 	 AND	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 City	 =	 z	 	

?	

0%	

100%	

100%	

?	

?	

?	

Query	 Coverage	
[City]	

[Age]	

[Salary]	

[City,	 Age]	

[Age,	 Salary]	

[City,	 Salary]	

[City,	 Age,	 Salary]	

SELECT	 AVG	 (…)	
FROM	 Table	
WHERE	 Age	 =	 x	 	 AND	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 City	 =	 z	 	

83%	

0%	

100%	

100%	

50%	

100%	

100%	

K

B1

B21

B22

B31

B32

B33

B41

B42

B51

B52

B6 B7 B8

B43

x

(a)

K

B1

B21

B22

B31

B32

B33

B51

B52

B6 B7 B8

B43

K1
B42

B41

x

(b)
Figure �. (a) Possible storage layout for strati�ed sample S(�,K).

dimensional strati�ed samples. As described above, each
strati�ed sample can potentially be used at runtime to im-
prove query accuracy and latency, especially when the orig-
inal table contains small groups for a particular column set.
However, each stored sample has a storage cost equal to its
size, and the number of potential samples is exponential in
the number of columns. As a result, we need to be careful
in choosing the set of column-sets on which to build strati-
�ed samples.We formulate the trade-o� between storage cost
and query accuracy/performance as an optimization prob-
lem, described next.

�.�.� Problem Formulation
�e optimization problem takes three factors into account in
determining the sets of columns on which strati�ed samples
should be built: the “sparsity” of the data,workload character-
istics, and the storage cost of samples.

Sparsity of the data. A strati�ed sample on � is useful when
the original table T contains many small groups under �.
Consider aQCS � in table T . Recall thatD(�) denotes the set
of all distinct values on columns � in rows of T . We de�ne a
“sparsity” function ∆(�,M) as the number of groups whose
size in T is less than some number M�:

∆(�,M) = �{x ∈ D(�) ∶ �Tx � < M}�
Workload.A strati�ed sample is only useful when it is bene-
�cial to actual queries. Under our model for queries, a query
has a QCS q j with some (unknown) probability p j - that is,
QCSs are drawn from aMultinomial (p� , p� , ...) distribution.
�e best estimate of p j is simply the frequency of queries with
QCS q j in past queries.

Storage cost. Storage is the main constraint against build-
ing too many strati�ed samples, and against building strat-
i�ed samples on large column sets that produce too many
groups. �erefore, we must compute the storage cost of po-
tential samples and constrain total storage. To simplify the
formulation, we assume a single value of K for all samples;
a sample family � either receives no samples or a full sam-
ple with K elements of Tx for each x ∈ D(�). �S(�,K)� is the
storage cost (in rows) of building a strati�ed sample on a set
of columns �.
�Appropriate values for M will be discussed later in this section. Alterna-
tively, one could plug in di�erent notions of sparsity of a distribution in our
formulation.

Given these three factors de�ned above, we now introduce
our optimization formulation. Let the overall storage capacity
budget (again in rows) be C. Our goal is to select β column
sets from among m possible QCSs, say � i� ,�, � iβ , which can
best answer our queries, while satisfying:

β�
k=�
�S(� ik ,K)� ≤ C

Speci�cally, inBlinkDB, wemaximize the followingmixed
integer linear program (MILP) in which j indexes over all
queries and i indexes over all possible column sets:

G =�
j
p j ⋅ y j ⋅ ∆(q j ,M) (�)

subject to
m�
i=� �S(� i ,K)� ⋅ zi ≤ C (�)

and

∀ j ∶ y j ≤ max
i∶� i⊆q j∪i∶� i⊃q j

(zi min �,
�D(� i)��D(q j)�) (�)

where � ≤ y j ≤ � and zi ∈ {�, �} are variables.
Here, zi is a binary variable determiningwhether a sample

family should be built or not, i.e., when zi = �, we build a
sample family on � i ; otherwise, when zi = �, we do not.

�e goal function (�) aims to maximize the weighted sum
of the coverage of the QCSs of the queries, q j . If we create a
strati�ed sample S(� i ,K), the coverage of this sample for q j
is de�ned as the probability that a given value x of columns q j
is also present among the rows of S(� i ,K). If � i ⊇ q j , then q j
is covered exactly, but � i ⊂ q j can also be useful by partially
covering q j . At runtime, if no strati�ed sample is available that
exactly covers a theQCS for a query, a partially-coveringQCS
may be used instead. In particular, the uniform sample is a
degenerate case with � i = �; it is useful for many queries but
less useful than more targeted strati�ed samples.

Since the coverage probability is hard to compute in prac-
tice, in this paper we approximate it by y j , which is deter-
mined by constraint (�).�e y j value is in [�, �], with �mean-
ing no coverage, and � meaning full coverage. �e intuition
behind (�) is that when we build a strati�ed sample on a
subset of columns � i ⊆ q j , i.e. when zi = �, we have par-
tially covered q j , too. We compute this coverage as the ra-
tio of the number of unique values between the two sets, i.e.,

Cost	 of	 StraEficaEon	
ID	 City	 Age	 Salary	

1	 NYC	 25	 50,000	

2	 NYC	 25	 80,000	

3	 Ann	 Arbor	 35	 80,000	

4	 NYC	 25	 120,000	

5	 NYC	 25	 80,000	

6	 Berkeley	 25	 80,000	

7	 NYC	 25	 60,000	

8	 NYC	 25	 70,000	

9	 Berkeley	 30	 80,000	

10	 Berkeley	 25	 90,000	

11	 NYC	 40	 80,000	

12	 Ann	 Arbor	 45	 100,000	

ID	 City	 Age	 Salary	 Ratio	

1	 NYC	 25	 50,000	 2/7	

8	 NYC	 35	 70,000	 2/7	

6	 Berkeley	 25	 80,000	 2/3	

10	 Berkeley	 25	 90,000	 2/3	

3	 Ann	 Arbor	 35	 80,000	 1	

12	 Ann	 Arbor	 45	 100,000	 1	

Stratified	 Sample	 on	
[City]	

Cost	 =	 6	

ID	 City	 Age	 Salary	

1	 NYC	 25	 50,000	

2	 NYC	 25	 80,000	

3	 Ann	 Arbor	 35	 80,000	

4	 NYC	 25	 120,000	

5	 NYC	 25	 80,000	

6	 Berkeley	 25	 80,000	

7	 NYC	 25	 60,000	

8	 NYC	 25	 70,000	

9	 Berkeley	 30	 80,000	

10	 Berkeley	 25	 90,000	

11	 NYC	 40	 80,000	

12	 Ann	 Arbor	 45	 100,000	

Cost	 of	 StraEficaEon	

ID	 City	 Age	 Salary	 Ratio	

1	 NYC	 25	 50,000	 1	

7	 NYC	 25	 60,000	 1	

8	 NYC	 25	 70,000	 1	

3	 Ann	 Arbor	 35	 80,000	 1/3	

9	 Berkeley	 30	 80,000	 1/3	

10	 Berkeley	 25	 90,000	 1	

12	 Ann	 Arbor	 45	 100,000	 1	

4	 NYC	 25	 120,000	 1	

Stratified	 Sample	 on	
[Salary]	

Cost	 =	 8	

K

B1

B21

B22

B31

B32

B33

B41

B42

B51

B52

B6 B7 B8

B43

x

(a)

K

B1

B21

B22

B31

B32

B33

B51

B52

B6 B7 B8

B43

K1
B42

B41

x

(b)
Figure �. (a) Possible storage layout for strati�ed sample S(�,K).

dimensional strati�ed samples. As described above, each
strati�ed sample can potentially be used at runtime to im-
prove query accuracy and latency, especially when the orig-
inal table contains small groups for a particular column set.
However, each stored sample has a storage cost equal to its
size, and the number of potential samples is exponential in
the number of columns. As a result, we need to be careful
in choosing the set of column-sets on which to build strati-
�ed samples.We formulate the trade-o� between storage cost
and query accuracy/performance as an optimization prob-
lem, described next.

�.�.� Problem Formulation
�e optimization problem takes three factors into account in
determining the sets of columns on which strati�ed samples
should be built: the “sparsity” of the data,workload character-
istics, and the storage cost of samples.

Sparsity of the data. A strati�ed sample on � is useful when
the original table T contains many small groups under �.
Consider aQCS � in table T . Recall thatD(�) denotes the set
of all distinct values on columns � in rows of T . We de�ne a
“sparsity” function ∆(�,M) as the number of groups whose
size in T is less than some number M�:

∆(�,M) = �{x ∈ D(�) ∶ �Tx � < M}�
Workload.A strati�ed sample is only useful when it is bene-
�cial to actual queries. Under our model for queries, a query
has a QCS q j with some (unknown) probability p j - that is,
QCSs are drawn from aMultinomial (p� , p� , ...) distribution.
�e best estimate of p j is simply the frequency of queries with
QCS q j in past queries.

Storage cost. Storage is the main constraint against build-
ing too many strati�ed samples, and against building strat-
i�ed samples on large column sets that produce too many
groups. �erefore, we must compute the storage cost of po-
tential samples and constrain total storage. To simplify the
formulation, we assume a single value of K for all samples;
a sample family � either receives no samples or a full sam-
ple with K elements of Tx for each x ∈ D(�). �S(�,K)� is the
storage cost (in rows) of building a strati�ed sample on a set
of columns �.
�Appropriate values for M will be discussed later in this section. Alterna-
tively, one could plug in di�erent notions of sparsity of a distribution in our
formulation.

Given these three factors de�ned above, we now introduce
our optimization formulation. Let the overall storage capacity
budget (again in rows) be C. Our goal is to select β column
sets from among m possible QCSs, say � i� ,�, � iβ , which can
best answer our queries, while satisfying:

β�
k=�
�S(� ik ,K)� ≤ C

Speci�cally, inBlinkDB, wemaximize the followingmixed
integer linear program (MILP) in which j indexes over all
queries and i indexes over all possible column sets:

G =�
j
p j ⋅ y j ⋅ ∆(q j ,M) (�)

subject to
m�
i=� �S(� i ,K)� ⋅ zi ≤ C (�)

and

∀ j ∶ y j ≤ max
i∶� i⊆q j∪i∶� i⊃q j

(zi min �,
�D(� i)��D(q j)�) (�)

where � ≤ y j ≤ � and zi ∈ {�, �} are variables.
Here, zi is a binary variable determiningwhether a sample

family should be built or not, i.e., when zi = �, we build a
sample family on � i ; otherwise, when zi = �, we do not.

�e goal function (�) aims to maximize the weighted sum
of the coverage of the QCSs of the queries, q j . If we create a
strati�ed sample S(� i ,K), the coverage of this sample for q j
is de�ned as the probability that a given value x of columns q j
is also present among the rows of S(� i ,K). If � i ⊇ q j , then q j
is covered exactly, but � i ⊂ q j can also be useful by partially
covering q j . At runtime, if no strati�ed sample is available that
exactly covers a theQCS for a query, a partially-coveringQCS
may be used instead. In particular, the uniform sample is a
degenerate case with � i = �; it is useful for many queries but
less useful than more targeted strati�ed samples.

Since the coverage probability is hard to compute in prac-
tice, in this paper we approximate it by y j , which is deter-
mined by constraint (�).�e y j value is in [�, �], with �mean-
ing no coverage, and � meaning full coverage. �e intuition
behind (�) is that when we build a strati�ed sample on a
subset of columns � i ⊆ q j , i.e. when zi = �, we have par-
tially covered q j , too. We compute this coverage as the ra-
tio of the number of unique values between the two sets, i.e.,

MILP	 Formulation	

Maximize	

K

B1

B21

B22

B31

B32

B33

B41

B42

B51

B52

B6 B7 B8

B43

x

(a)

K

B1

B21

B22

B31

B32

B33

B51

B52

B6 B7 B8

B43

K1
B42

B41

x

(b)
Figure �. (a) Possible storage layout for strati�ed sample S(�,K).

dimensional strati�ed samples. As described above, each
strati�ed sample can potentially be used at runtime to im-
prove query accuracy and latency, especially when the orig-
inal table contains small groups for a particular column set.
However, each stored sample has a storage cost equal to its
size, and the number of potential samples is exponential in
the number of columns. As a result, we need to be careful
in choosing the set of column-sets on which to build strati-
�ed samples.We formulate the trade-o� between storage cost
and query accuracy/performance as an optimization prob-
lem, described next.

�.�.� Problem Formulation
�e optimization problem takes three factors into account in
determining the sets of columns on which strati�ed samples
should be built: the “sparsity” of the data,workload character-
istics, and the storage cost of samples.

Sparsity of the data. A strati�ed sample on � is useful when
the original table T contains many small groups under �.
Consider aQCS � in table T . Recall thatD(�) denotes the set
of all distinct values on columns � in rows of T . We de�ne a
“sparsity” function ∆(�,M) as the number of groups whose
size in T is less than some number M�:

∆(�,M) = �{x ∈ D(�) ∶ �Tx � < M}�
Workload.A strati�ed sample is only useful when it is bene-
�cial to actual queries. Under our model for queries, a query
has a QCS q j with some (unknown) probability p j - that is,
QCSs are drawn from aMultinomial (p� , p� , ...) distribution.
�e best estimate of p j is simply the frequency of queries with
QCS q j in past queries.

Storage cost. Storage is the main constraint against build-
ing too many strati�ed samples, and against building strat-
i�ed samples on large column sets that produce too many
groups. �erefore, we must compute the storage cost of po-
tential samples and constrain total storage. To simplify the
formulation, we assume a single value of K for all samples;
a sample family � either receives no samples or a full sam-
ple with K elements of Tx for each x ∈ D(�). �S(�,K)� is the
storage cost (in rows) of building a strati�ed sample on a set
of columns �.
�Appropriate values for M will be discussed later in this section. Alterna-
tively, one could plug in di�erent notions of sparsity of a distribution in our
formulation.

Given these three factors de�ned above, we now introduce
our optimization formulation. Let the overall storage capacity
budget (again in rows) be C. Our goal is to select β column
sets from among m possible QCSs, say � i� ,�, � iβ , which can
best answer our queries, while satisfying:

β�
k=�
�S(� ik ,K)� ≤ C

Speci�cally, inBlinkDB, wemaximize the followingmixed
integer linear program (MILP) in which j indexes over all
queries and i indexes over all possible column sets:

G =�
j
p j ⋅ y j ⋅ ∆(q j ,M) (�)

subject to
m�
i=� �S(� i ,K)� ⋅ zi ≤ C (�)

and

∀ j ∶ y j ≤ max
i∶� i⊆q j∪i∶� i⊃q j

(zi min �,
�D(� i)��D(q j)�) (�)

where � ≤ y j ≤ � and zi ∈ {�, �} are variables.
Here, zi is a binary variable determiningwhether a sample

family should be built or not, i.e., when zi = �, we build a
sample family on � i ; otherwise, when zi = �, we do not.

�e goal function (�) aims to maximize the weighted sum
of the coverage of the QCSs of the queries, q j . If we create a
strati�ed sample S(� i ,K), the coverage of this sample for q j
is de�ned as the probability that a given value x of columns q j
is also present among the rows of S(� i ,K). If � i ⊇ q j , then q j
is covered exactly, but � i ⊂ q j can also be useful by partially
covering q j . At runtime, if no strati�ed sample is available that
exactly covers a theQCS for a query, a partially-coveringQCS
may be used instead. In particular, the uniform sample is a
degenerate case with � i = �; it is useful for many queries but
less useful than more targeted strati�ed samples.

Since the coverage probability is hard to compute in prac-
tice, in this paper we approximate it by y j , which is deter-
mined by constraint (�).�e y j value is in [�, �], with �mean-
ing no coverage, and � meaning full coverage. �e intuition
behind (�) is that when we build a strati�ed sample on a
subset of columns � i ⊆ q j , i.e. when zi = �, we have par-
tially covered q j , too. We compute this coverage as the ra-
tio of the number of unique values between the two sets, i.e.,

MILP	 Formulation	

Maximize	

Cost	 of	 all	
Samples	

K

B1

B21

B22

B31

B32

B33

B41

B42

B51

B52

B6 B7 B8

B43

x

(a)

K

B1

B21

B22

B31

B32

B33

B51

B52

B6 B7 B8

B43

K1
B42

B41

x

(b)
Figure �. (a) Possible storage layout for strati�ed sample S(�,K).

dimensional strati�ed samples. As described above, each
strati�ed sample can potentially be used at runtime to im-
prove query accuracy and latency, especially when the orig-
inal table contains small groups for a particular column set.
However, each stored sample has a storage cost equal to its
size, and the number of potential samples is exponential in
the number of columns. As a result, we need to be careful
in choosing the set of column-sets on which to build strati-
�ed samples.We formulate the trade-o� between storage cost
and query accuracy/performance as an optimization prob-
lem, described next.

�.�.� Problem Formulation
�e optimization problem takes three factors into account in
determining the sets of columns on which strati�ed samples
should be built: the “sparsity” of the data,workload character-
istics, and the storage cost of samples.

Sparsity of the data. A strati�ed sample on � is useful when
the original table T contains many small groups under �.
Consider aQCS � in table T . Recall thatD(�) denotes the set
of all distinct values on columns � in rows of T . We de�ne a
“sparsity” function ∆(�,M) as the number of groups whose
size in T is less than some number M�:

∆(�,M) = �{x ∈ D(�) ∶ �Tx � < M}�
Workload.A strati�ed sample is only useful when it is bene-
�cial to actual queries. Under our model for queries, a query
has a QCS q j with some (unknown) probability p j - that is,
QCSs are drawn from aMultinomial (p� , p� , ...) distribution.
�e best estimate of p j is simply the frequency of queries with
QCS q j in past queries.

Storage cost. Storage is the main constraint against build-
ing too many strati�ed samples, and against building strat-
i�ed samples on large column sets that produce too many
groups. �erefore, we must compute the storage cost of po-
tential samples and constrain total storage. To simplify the
formulation, we assume a single value of K for all samples;
a sample family � either receives no samples or a full sam-
ple with K elements of Tx for each x ∈ D(�). �S(�,K)� is the
storage cost (in rows) of building a strati�ed sample on a set
of columns �.
�Appropriate values for M will be discussed later in this section. Alterna-
tively, one could plug in di�erent notions of sparsity of a distribution in our
formulation.

Given these three factors de�ned above, we now introduce
our optimization formulation. Let the overall storage capacity
budget (again in rows) be C. Our goal is to select β column
sets from among m possible QCSs, say � i� ,�, � iβ , which can
best answer our queries, while satisfying:

β�
k=�
�S(� ik ,K)� ≤ C

Speci�cally, inBlinkDB, wemaximize the followingmixed
integer linear program (MILP) in which j indexes over all
queries and i indexes over all possible column sets:

G =�
j
p j ⋅ y j ⋅ ∆(q j ,M) (�)

subject to
m�
i=� �S(� i ,K)� ⋅ zi ≤ C (�)

and

∀ j ∶ y j ≤ max
i∶� i⊆q j∪i∶� i⊃q j

(zi min �,
�D(� i)��D(q j)�) (�)

where � ≤ y j ≤ � and zi ∈ {�, �} are variables.
Here, zi is a binary variable determiningwhether a sample

family should be built or not, i.e., when zi = �, we build a
sample family on � i ; otherwise, when zi = �, we do not.

�e goal function (�) aims to maximize the weighted sum
of the coverage of the QCSs of the queries, q j . If we create a
strati�ed sample S(� i ,K), the coverage of this sample for q j
is de�ned as the probability that a given value x of columns q j
is also present among the rows of S(� i ,K). If � i ⊇ q j , then q j
is covered exactly, but � i ⊂ q j can also be useful by partially
covering q j . At runtime, if no strati�ed sample is available that
exactly covers a theQCS for a query, a partially-coveringQCS
may be used instead. In particular, the uniform sample is a
degenerate case with � i = �; it is useful for many queries but
less useful than more targeted strati�ed samples.

Since the coverage probability is hard to compute in prac-
tice, in this paper we approximate it by y j , which is deter-
mined by constraint (�).�e y j value is in [�, �], with �mean-
ing no coverage, and � meaning full coverage. �e intuition
behind (�) is that when we build a strati�ed sample on a
subset of columns � i ⊆ q j , i.e. when zi = �, we have par-
tially covered q j , too. We compute this coverage as the ra-
tio of the number of unique values between the two sets, i.e.,

MILP	 Formulation	

Maximize	

Probability	 of	 each	 Query	
Type	 in	 the	 Workload	

K

B1

B21

B22

B31

B32

B33

B41

B42

B51

B52

B6 B7 B8

B43

x

(a)

K

B1

B21

B22

B31

B32

B33

B51

B52

B6 B7 B8

B43

K1
B42

B41

x

(b)
Figure �. (a) Possible storage layout for strati�ed sample S(�,K).

dimensional strati�ed samples. As described above, each
strati�ed sample can potentially be used at runtime to im-
prove query accuracy and latency, especially when the orig-
inal table contains small groups for a particular column set.
However, each stored sample has a storage cost equal to its
size, and the number of potential samples is exponential in
the number of columns. As a result, we need to be careful
in choosing the set of column-sets on which to build strati-
�ed samples.We formulate the trade-o� between storage cost
and query accuracy/performance as an optimization prob-
lem, described next.

�.�.� Problem Formulation
�e optimization problem takes three factors into account in
determining the sets of columns on which strati�ed samples
should be built: the “sparsity” of the data,workload character-
istics, and the storage cost of samples.

Sparsity of the data. A strati�ed sample on � is useful when
the original table T contains many small groups under �.
Consider aQCS � in table T . Recall thatD(�) denotes the set
of all distinct values on columns � in rows of T . We de�ne a
“sparsity” function ∆(�,M) as the number of groups whose
size in T is less than some number M�:

∆(�,M) = �{x ∈ D(�) ∶ �Tx � < M}�
Workload.A strati�ed sample is only useful when it is bene-
�cial to actual queries. Under our model for queries, a query
has a QCS q j with some (unknown) probability p j - that is,
QCSs are drawn from aMultinomial (p� , p� , ...) distribution.
�e best estimate of p j is simply the frequency of queries with
QCS q j in past queries.

Storage cost. Storage is the main constraint against build-
ing too many strati�ed samples, and against building strat-
i�ed samples on large column sets that produce too many
groups. �erefore, we must compute the storage cost of po-
tential samples and constrain total storage. To simplify the
formulation, we assume a single value of K for all samples;
a sample family � either receives no samples or a full sam-
ple with K elements of Tx for each x ∈ D(�). �S(�,K)� is the
storage cost (in rows) of building a strati�ed sample on a set
of columns �.
�Appropriate values for M will be discussed later in this section. Alterna-
tively, one could plug in di�erent notions of sparsity of a distribution in our
formulation.

Given these three factors de�ned above, we now introduce
our optimization formulation. Let the overall storage capacity
budget (again in rows) be C. Our goal is to select β column
sets from among m possible QCSs, say � i� ,�, � iβ , which can
best answer our queries, while satisfying:

β�
k=�
�S(� ik ,K)� ≤ C

Speci�cally, inBlinkDB, wemaximize the followingmixed
integer linear program (MILP) in which j indexes over all
queries and i indexes over all possible column sets:

G =�
j
p j ⋅ y j ⋅ ∆(q j ,M) (�)

subject to
m�
i=� �S(� i ,K)� ⋅ zi ≤ C (�)

and

∀ j ∶ y j ≤ max
i∶� i⊆q j∪i∶� i⊃q j

(zi min �,
�D(� i)��D(q j)�) (�)

where � ≤ y j ≤ � and zi ∈ {�, �} are variables.
Here, zi is a binary variable determiningwhether a sample

family should be built or not, i.e., when zi = �, we build a
sample family on � i ; otherwise, when zi = �, we do not.

�e goal function (�) aims to maximize the weighted sum
of the coverage of the QCSs of the queries, q j . If we create a
strati�ed sample S(� i ,K), the coverage of this sample for q j
is de�ned as the probability that a given value x of columns q j
is also present among the rows of S(� i ,K). If � i ⊇ q j , then q j
is covered exactly, but � i ⊂ q j can also be useful by partially
covering q j . At runtime, if no strati�ed sample is available that
exactly covers a theQCS for a query, a partially-coveringQCS
may be used instead. In particular, the uniform sample is a
degenerate case with � i = �; it is useful for many queries but
less useful than more targeted strati�ed samples.

Since the coverage probability is hard to compute in prac-
tice, in this paper we approximate it by y j , which is deter-
mined by constraint (�).�e y j value is in [�, �], with �mean-
ing no coverage, and � meaning full coverage. �e intuition
behind (�) is that when we build a strati�ed sample on a
subset of columns � i ⊆ q j , i.e. when zi = �, we have par-
tially covered q j , too. We compute this coverage as the ra-
tio of the number of unique values between the two sets, i.e.,

Cost	 of	 all	
Samples	

=	

K

B1

B21

B22

B31

B32

B33

B41

B42

B51

B52

B6 B7 B8

B43

x

(a)

K

B1

B21

B22

B31

B32

B33

B51

B52

B6 B7 B8

B43

K1
B42

B41

x

(b)
Figure �. (a) Possible storage layout for strati�ed sample S(�,K).

dimensional strati�ed samples. As described above, each
strati�ed sample can potentially be used at runtime to im-
prove query accuracy and latency, especially when the orig-
inal table contains small groups for a particular column set.
However, each stored sample has a storage cost equal to its
size, and the number of potential samples is exponential in
the number of columns. As a result, we need to be careful
in choosing the set of column-sets on which to build strati-
�ed samples.We formulate the trade-o� between storage cost
and query accuracy/performance as an optimization prob-
lem, described next.

�.�.� Problem Formulation
�e optimization problem takes three factors into account in
determining the sets of columns on which strati�ed samples
should be built: the “sparsity” of the data,workload character-
istics, and the storage cost of samples.

Sparsity of the data. A strati�ed sample on � is useful when
the original table T contains many small groups under �.
Consider aQCS � in table T . Recall thatD(�) denotes the set
of all distinct values on columns � in rows of T . We de�ne a
“sparsity” function ∆(�,M) as the number of groups whose
size in T is less than some number M�:

∆(�,M) = �{x ∈ D(�) ∶ �Tx � < M}�
Workload.A strati�ed sample is only useful when it is bene-
�cial to actual queries. Under our model for queries, a query
has a QCS q j with some (unknown) probability p j - that is,
QCSs are drawn from aMultinomial (p� , p� , ...) distribution.
�e best estimate of p j is simply the frequency of queries with
QCS q j in past queries.

Storage cost. Storage is the main constraint against build-
ing too many strati�ed samples, and against building strat-
i�ed samples on large column sets that produce too many
groups. �erefore, we must compute the storage cost of po-
tential samples and constrain total storage. To simplify the
formulation, we assume a single value of K for all samples;
a sample family � either receives no samples or a full sam-
ple with K elements of Tx for each x ∈ D(�). �S(�,K)� is the
storage cost (in rows) of building a strati�ed sample on a set
of columns �.
�Appropriate values for M will be discussed later in this section. Alterna-
tively, one could plug in di�erent notions of sparsity of a distribution in our
formulation.

Given these three factors de�ned above, we now introduce
our optimization formulation. Let the overall storage capacity
budget (again in rows) be C. Our goal is to select β column
sets from among m possible QCSs, say � i� ,�, � iβ , which can
best answer our queries, while satisfying:

β�
k=�
�S(� ik ,K)� ≤ C

Speci�cally, inBlinkDB, wemaximize the followingmixed
integer linear program (MILP) in which j indexes over all
queries and i indexes over all possible column sets:

G =�
j
p j ⋅ y j ⋅ ∆(q j ,M) (�)

subject to
m�
i=� �S(� i ,K)� ⋅ zi ≤ C (�)

and

∀ j ∶ y j ≤ max
i∶� i⊆q j∪i∶� i⊃q j

(zi min �,
�D(� i)��D(q j)�) (�)

where � ≤ y j ≤ � and zi ∈ {�, �} are variables.
Here, zi is a binary variable determiningwhether a sample

family should be built or not, i.e., when zi = �, we build a
sample family on � i ; otherwise, when zi = �, we do not.

�e goal function (�) aims to maximize the weighted sum
of the coverage of the QCSs of the queries, q j . If we create a
strati�ed sample S(� i ,K), the coverage of this sample for q j
is de�ned as the probability that a given value x of columns q j
is also present among the rows of S(� i ,K). If � i ⊇ q j , then q j
is covered exactly, but � i ⊂ q j can also be useful by partially
covering q j . At runtime, if no strati�ed sample is available that
exactly covers a theQCS for a query, a partially-coveringQCS
may be used instead. In particular, the uniform sample is a
degenerate case with � i = �; it is useful for many queries but
less useful than more targeted strati�ed samples.

Since the coverage probability is hard to compute in prac-
tice, in this paper we approximate it by y j , which is deter-
mined by constraint (�).�e y j value is in [�, �], with �mean-
ing no coverage, and � meaning full coverage. �e intuition
behind (�) is that when we build a strati�ed sample on a
subset of columns � i ⊆ q j , i.e. when zi = �, we have par-
tially covered q j , too. We compute this coverage as the ra-
tio of the number of unique values between the two sets, i.e.,

MILP	 Formulation	

Maximize	

K

B1

B21

B22

B31

B32

B33

B41

B42

B51

B52

B6 B7 B8

B43

x

(a)

K

B1

B21

B22

B31

B32

B33

B51

B52

B6 B7 B8

B43

K1
B42

B41

x

(b)
Figure �. (a) Possible storage layout for strati�ed sample S(�,K).

dimensional strati�ed samples. As described above, each
strati�ed sample can potentially be used at runtime to im-
prove query accuracy and latency, especially when the orig-
inal table contains small groups for a particular column set.
However, each stored sample has a storage cost equal to its
size, and the number of potential samples is exponential in
the number of columns. As a result, we need to be careful
in choosing the set of column-sets on which to build strati-
�ed samples.We formulate the trade-o� between storage cost
and query accuracy/performance as an optimization prob-
lem, described next.

�.�.� Problem Formulation
�e optimization problem takes three factors into account in
determining the sets of columns on which strati�ed samples
should be built: the “sparsity” of the data,workload character-
istics, and the storage cost of samples.

Sparsity of the data. A strati�ed sample on � is useful when
the original table T contains many small groups under �.
Consider aQCS � in table T . Recall thatD(�) denotes the set
of all distinct values on columns � in rows of T . We de�ne a
“sparsity” function ∆(�,M) as the number of groups whose
size in T is less than some number M�:

∆(�,M) = �{x ∈ D(�) ∶ �Tx � < M}�
Workload.A strati�ed sample is only useful when it is bene-
�cial to actual queries. Under our model for queries, a query
has a QCS q j with some (unknown) probability p j - that is,
QCSs are drawn from aMultinomial (p� , p� , ...) distribution.
�e best estimate of p j is simply the frequency of queries with
QCS q j in past queries.

Storage cost. Storage is the main constraint against build-
ing too many strati�ed samples, and against building strat-
i�ed samples on large column sets that produce too many
groups. �erefore, we must compute the storage cost of po-
tential samples and constrain total storage. To simplify the
formulation, we assume a single value of K for all samples;
a sample family � either receives no samples or a full sam-
ple with K elements of Tx for each x ∈ D(�). �S(�,K)� is the
storage cost (in rows) of building a strati�ed sample on a set
of columns �.
�Appropriate values for M will be discussed later in this section. Alterna-
tively, one could plug in di�erent notions of sparsity of a distribution in our
formulation.

Given these three factors de�ned above, we now introduce
our optimization formulation. Let the overall storage capacity
budget (again in rows) be C. Our goal is to select β column
sets from among m possible QCSs, say � i� ,�, � iβ , which can
best answer our queries, while satisfying:

β�
k=�
�S(� ik ,K)� ≤ C

Speci�cally, inBlinkDB, wemaximize the followingmixed
integer linear program (MILP) in which j indexes over all
queries and i indexes over all possible column sets:

G =�
j
p j ⋅ y j ⋅ ∆(q j ,M) (�)

subject to
m�
i=� �S(� i ,K)� ⋅ zi ≤ C (�)

and

∀ j ∶ y j ≤ max
i∶� i⊆q j∪i∶� i⊃q j

(zi min �,
�D(� i)��D(q j)�) (�)

where � ≤ y j ≤ � and zi ∈ {�, �} are variables.
Here, zi is a binary variable determiningwhether a sample

family should be built or not, i.e., when zi = �, we build a
sample family on � i ; otherwise, when zi = �, we do not.

�e goal function (�) aims to maximize the weighted sum
of the coverage of the QCSs of the queries, q j . If we create a
strati�ed sample S(� i ,K), the coverage of this sample for q j
is de�ned as the probability that a given value x of columns q j
is also present among the rows of S(� i ,K). If � i ⊇ q j , then q j
is covered exactly, but � i ⊂ q j can also be useful by partially
covering q j . At runtime, if no strati�ed sample is available that
exactly covers a theQCS for a query, a partially-coveringQCS
may be used instead. In particular, the uniform sample is a
degenerate case with � i = �; it is useful for many queries but
less useful than more targeted strati�ed samples.

Since the coverage probability is hard to compute in prac-
tice, in this paper we approximate it by y j , which is deter-
mined by constraint (�).�e y j value is in [�, �], with �mean-
ing no coverage, and � meaning full coverage. �e intuition
behind (�) is that when we build a strati�ed sample on a
subset of columns � i ⊆ q j , i.e. when zi = �, we have par-
tially covered q j , too. We compute this coverage as the ra-
tio of the number of unique values between the two sets, i.e.,

Coverage	 Probability	 of	 each	
query	 Type	

Cost	 of	 all	
Samples	

K

B1

B21

B22

B31

B32

B33

B41

B42

B51

B52

B6 B7 B8

B43

x

(a)

K

B1

B21

B22

B31

B32

B33

B51

B52

B6 B7 B8

B43

K1
B42

B41

x

(b)
Figure �. (a) Possible storage layout for strati�ed sample S(�,K).

dimensional strati�ed samples. As described above, each
strati�ed sample can potentially be used at runtime to im-
prove query accuracy and latency, especially when the orig-
inal table contains small groups for a particular column set.
However, each stored sample has a storage cost equal to its
size, and the number of potential samples is exponential in
the number of columns. As a result, we need to be careful
in choosing the set of column-sets on which to build strati-
�ed samples.We formulate the trade-o� between storage cost
and query accuracy/performance as an optimization prob-
lem, described next.

�.�.� Problem Formulation
�e optimization problem takes three factors into account in
determining the sets of columns on which strati�ed samples
should be built: the “sparsity” of the data,workload character-
istics, and the storage cost of samples.

Sparsity of the data. A strati�ed sample on � is useful when
the original table T contains many small groups under �.
Consider aQCS � in table T . Recall thatD(�) denotes the set
of all distinct values on columns � in rows of T . We de�ne a
“sparsity” function ∆(�,M) as the number of groups whose
size in T is less than some number M�:

∆(�,M) = �{x ∈ D(�) ∶ �Tx � < M}�
Workload.A strati�ed sample is only useful when it is bene-
�cial to actual queries. Under our model for queries, a query
has a QCS q j with some (unknown) probability p j - that is,
QCSs are drawn from aMultinomial (p� , p� , ...) distribution.
�e best estimate of p j is simply the frequency of queries with
QCS q j in past queries.

Storage cost. Storage is the main constraint against build-
ing too many strati�ed samples, and against building strat-
i�ed samples on large column sets that produce too many
groups. �erefore, we must compute the storage cost of po-
tential samples and constrain total storage. To simplify the
formulation, we assume a single value of K for all samples;
a sample family � either receives no samples or a full sam-
ple with K elements of Tx for each x ∈ D(�). �S(�,K)� is the
storage cost (in rows) of building a strati�ed sample on a set
of columns �.
�Appropriate values for M will be discussed later in this section. Alterna-
tively, one could plug in di�erent notions of sparsity of a distribution in our
formulation.

Given these three factors de�ned above, we now introduce
our optimization formulation. Let the overall storage capacity
budget (again in rows) be C. Our goal is to select β column
sets from among m possible QCSs, say � i� ,�, � iβ , which can
best answer our queries, while satisfying:

β�
k=�
�S(� ik ,K)� ≤ C

Speci�cally, inBlinkDB, wemaximize the followingmixed
integer linear program (MILP) in which j indexes over all
queries and i indexes over all possible column sets:

G =�
j
p j ⋅ y j ⋅ ∆(q j ,M) (�)

subject to
m�
i=� �S(� i ,K)� ⋅ zi ≤ C (�)

and

∀ j ∶ y j ≤ max
i∶� i⊆q j∪i∶� i⊃q j

(zi min �,
�D(� i)��D(q j)�) (�)

where � ≤ y j ≤ � and zi ∈ {�, �} are variables.
Here, zi is a binary variable determiningwhether a sample

family should be built or not, i.e., when zi = �, we build a
sample family on � i ; otherwise, when zi = �, we do not.

�e goal function (�) aims to maximize the weighted sum
of the coverage of the QCSs of the queries, q j . If we create a
strati�ed sample S(� i ,K), the coverage of this sample for q j
is de�ned as the probability that a given value x of columns q j
is also present among the rows of S(� i ,K). If � i ⊇ q j , then q j
is covered exactly, but � i ⊂ q j can also be useful by partially
covering q j . At runtime, if no strati�ed sample is available that
exactly covers a theQCS for a query, a partially-coveringQCS
may be used instead. In particular, the uniform sample is a
degenerate case with � i = �; it is useful for many queries but
less useful than more targeted strati�ed samples.

Since the coverage probability is hard to compute in prac-
tice, in this paper we approximate it by y j , which is deter-
mined by constraint (�).�e y j value is in [�, �], with �mean-
ing no coverage, and � meaning full coverage. �e intuition
behind (�) is that when we build a strati�ed sample on a
subset of columns � i ⊆ q j , i.e. when zi = �, we have par-
tially covered q j , too. We compute this coverage as the ra-
tio of the number of unique values between the two sets, i.e.,

MILP	 Formulation	

Maximize	

Sparsity	
FuncEon	

Cost	 of	 all	
Samples	

K

B1

B21

B22

B31

B32

B33

B41

B42

B51

B52

B6 B7 B8

B43

x

(a)

K

B1

B21

B22

B31

B32

B33

B51

B52

B6 B7 B8

B43

K1
B42

B41

x

(b)
Figure �. (a) Possible storage layout for strati�ed sample S(�,K).

dimensional strati�ed samples. As described above, each
strati�ed sample can potentially be used at runtime to im-
prove query accuracy and latency, especially when the orig-
inal table contains small groups for a particular column set.
However, each stored sample has a storage cost equal to its
size, and the number of potential samples is exponential in
the number of columns. As a result, we need to be careful
in choosing the set of column-sets on which to build strati-
�ed samples.We formulate the trade-o� between storage cost
and query accuracy/performance as an optimization prob-
lem, described next.

�.�.� Problem Formulation
�e optimization problem takes three factors into account in
determining the sets of columns on which strati�ed samples
should be built: the “sparsity” of the data,workload character-
istics, and the storage cost of samples.

Sparsity of the data. A strati�ed sample on � is useful when
the original table T contains many small groups under �.
Consider aQCS � in table T . Recall thatD(�) denotes the set
of all distinct values on columns � in rows of T . We de�ne a
“sparsity” function ∆(�,M) as the number of groups whose
size in T is less than some number M�:

∆(�,M) = �{x ∈ D(�) ∶ �Tx � < M}�
Workload.A strati�ed sample is only useful when it is bene-
�cial to actual queries. Under our model for queries, a query
has a QCS q j with some (unknown) probability p j - that is,
QCSs are drawn from aMultinomial (p� , p� , ...) distribution.
�e best estimate of p j is simply the frequency of queries with
QCS q j in past queries.

Storage cost. Storage is the main constraint against build-
ing too many strati�ed samples, and against building strat-
i�ed samples on large column sets that produce too many
groups. �erefore, we must compute the storage cost of po-
tential samples and constrain total storage. To simplify the
formulation, we assume a single value of K for all samples;
a sample family � either receives no samples or a full sam-
ple with K elements of Tx for each x ∈ D(�). �S(�,K)� is the
storage cost (in rows) of building a strati�ed sample on a set
of columns �.
�Appropriate values for M will be discussed later in this section. Alterna-
tively, one could plug in di�erent notions of sparsity of a distribution in our
formulation.

Given these three factors de�ned above, we now introduce
our optimization formulation. Let the overall storage capacity
budget (again in rows) be C. Our goal is to select β column
sets from among m possible QCSs, say � i� ,�, � iβ , which can
best answer our queries, while satisfying:

β�
k=�
�S(� ik ,K)� ≤ C

Speci�cally, inBlinkDB, wemaximize the followingmixed
integer linear program (MILP) in which j indexes over all
queries and i indexes over all possible column sets:

G =�
j
p j ⋅ y j ⋅ ∆(q j ,M) (�)

subject to
m�
i=� �S(� i ,K)� ⋅ zi ≤ C (�)

and

∀ j ∶ y j ≤ max
i∶� i⊆q j∪i∶� i⊃q j

(zi min �,
�D(� i)��D(q j)�) (�)

where � ≤ y j ≤ � and zi ∈ {�, �} are variables.
Here, zi is a binary variable determiningwhether a sample

family should be built or not, i.e., when zi = �, we build a
sample family on � i ; otherwise, when zi = �, we do not.

�e goal function (�) aims to maximize the weighted sum
of the coverage of the QCSs of the queries, q j . If we create a
strati�ed sample S(� i ,K), the coverage of this sample for q j
is de�ned as the probability that a given value x of columns q j
is also present among the rows of S(� i ,K). If � i ⊇ q j , then q j
is covered exactly, but � i ⊂ q j can also be useful by partially
covering q j . At runtime, if no strati�ed sample is available that
exactly covers a theQCS for a query, a partially-coveringQCS
may be used instead. In particular, the uniform sample is a
degenerate case with � i = �; it is useful for many queries but
less useful than more targeted strati�ed samples.

Since the coverage probability is hard to compute in prac-
tice, in this paper we approximate it by y j , which is deter-
mined by constraint (�).�e y j value is in [�, �], with �mean-
ing no coverage, and � meaning full coverage. �e intuition
behind (�) is that when we build a strati�ed sample on a
subset of columns � i ⊆ q j , i.e. when zi = �, we have par-
tially covered q j , too. We compute this coverage as the ra-
tio of the number of unique values between the two sets, i.e.,

=	

Experimental	 Setup	

•  Conviva:	 30-‐day	 log	 of	 media	 accesses	 by	
Conviva	 users.	 Raw	 data	 17	 TB,	 partitioned	
this	 data	 across	 100	 nodes	

•  Log	 of	 17,000	 queries	 (a	 sample	 of	 200	
queries	 had	 17	 templates).	 	

•  50%	 of	 storage	 budget:	 8	 Stratified	 Samples	

Sampling	 Vs.	 No	 Sampling	

Fully
Cached
Partially
Cached

BlinkDB:	 Evaluation	

BlinkDB:	 Evaluation	

200-300x
Faster!

Response	 Time	 vs.	 Error	

Time	 Guarantees	

Error	 Guarantees	

Related	 Work	
Flexibility

Efficiency
Low flexibility /
High Efficiency

High flexibility /
Low Efficiency

Predictable++
Queries+

Predictable++
Access+
Patterns+

Predictable++
Query+
Column+Sets+

Unpredictable++
Queries+

Sketches,	
Wavelets,	
Histograms,	
Join	 Synopses	

STRAT	
SciBORQ	

AQUA	
BlinkDB	

OLA	

Taxonomy	 of	 Workload	 Models

BlinkDB	 is	 Open	 Sourced!	
hqp://blinkdb.org	

Deployed	 and	 used	 by	

Integrated	 into	 Presto	

Conclusion	
•  ApproximaIon	 is	 an	 important	 means	 to	
achieve	 interacIvity	 in	 the	 big	 data	 age	

•  Ad-‐hoc	 exploratory	 queries	 on	 an	
opImal	 set	 of	 mulI-‐dimensional	
straIfied	 samples	 converges	 to	 lower	
errors	 2-‐3	 orders	 of	 magnitude	 faster	
than	 non-‐opImal	 strategies	

References	
•  Blink	 and	 It's	 Done:	 Interactive	 Queries	 on	 Very	

Large	 Data,	 S.	 Agarwal,	 A.	 Panda,	 B.	 Mozafari,	 A.	
Iyer,	 S.	 Madden,	 I.	 Stoica,	 VLDB	 2012	 demo	

•  BlinkDB:	 Queries	 with	 Bounded	 Errors	 and	
Bounded	 Response	 Times	 on	 Very	 Large	 Data,	 S.	
Agarwal,	 B.	 Mozafari,	 A.	 Panda,	 H.	 Milner,	 S.	
Madden,	 I.	 Stoica,	 EuroSys	 2013	 [Best	 Paper	 Award]	 	

•  The	 Analytical	 Bootstrap:	 A	 New	 Method	 for	 Fast	
Error	 Estimation	 in	 Approximate	 Query	
Processing,	 K.	 Zeng,	 G.	 Shi,	 B.	 Mozafari,	 C.	 Zaniolo,	
under	 submission	

Backup	 Slides	

