BlinkDB:

Query Petabytes of Data in a
Blink Time!

Barzan Mozafari
University of Michigan, Ann Arbor

Collaborators

UC Berkeley

| —

b

lab

CSAIL

Sameer Agarwal
Aurojit Panda
Henry Milner

lon Stoica

Samuel Madden

My Research ...

Using statistics to build better data-
Intensive systems
1. More predictable

» How to predict resources in a DB?
» How to design a more predictable DB?

2. More scalable
» How to scale crowdsourcing?

» How to query petabytes of data in seconds?

You 3

Google

Big Data

Online Media Websites
Real-time Ad-performance, Spam Detection

Big Data

Log Processing
Root-cause Analysis, A/B Testing

Overview

Problem: Need to compute aggregate statistics
over massive sets of data

Our Goal: Support interactive ad-hoc analytical
gueries over these large datasets

100 TB on 1000 machines

1-2 Hours 25-30 Minutes 1 second

"“ 3 >
% 4 .
A - v k_ .
4 g % "2 5
>) T
£ % -
£ ‘
¥ .
R D5

Hard Disks Memory

Target Workload

1. Real-time latency is valued over perfect
accuracy

“On a good day, | can run up to 6

queries in Hive.”
- Anonymous Data Scientist at facebook.

Target Workload

1. Real-time latency is valued over perfect
accuracy: < 10 sec for interactive experience

“On a good day, | can run up to 6

queries in Hive.”
- Anonymous Data Scientist at facebook.

Target Workload

1. Real-time latency is valued over perfect
accuracy: < 10 sec for interactive experience

2. Exploration is ad-hoc

3. Columns queried together (i.e., Templates) are
stable over time

Target Workload

1. Real-time latency is valued over perfect

BN facebook
""'""6'8;7'8'25"Queri'e'#"s'2-1-1----Tém-p-|ate-s-§
90% Queries = 20% Templates

Fraction of Queries (CDF)
s

Facebook Queries (1 week)

R S S H Y R

0 20 40 60 80 100
Unique Query Templates (%)

Target Workload

1. Real-time latency is valued over perfect

Fraction of Queries (CDF)

0.4 !
: I
0.3 F- :
02 k- A SR ~ Conviva Queries (2 Years) ==m===
: | Facebook Queries (1 week)
0.1 L SR ISR SRR W M
0 20 40 60 80 100

Unique Query Templates (%)

Target Workload

1. Real-time latency is valued over perfect
accuracy: < 10 sec for interactive experience

2. Exploration is ad-hoc

3. Columns queried together (i.e., Templates) are
stable over time

4. User defined functions (UDF) must be
supported: 43.6% of Conviva’s queries

5. Data is high-dimensional & skewed: +100
columns

100 TB on 1000 machines

1-2 Hours 25-30 Minutes 1 second

One can often make perfect decision without
perfect answers

Approximation using Offline Samples

BlinkDB Interface

SELECT avg(sessionTime)
FROM Table

WHERE city=‘San Francisco’
WITHIN 1 SECONDS > 234.23 +15.32

BlinkDB Interface

SELECT avg(sessionTime)
FROM Table

WHERE city=‘San Francisco’
WITHIN 2 SECONDS >

23423-+1532
239.46 +4.96

SELECT avg(sessionTime)
FROM Table

WHERE city=‘San Francisco’
ERROR 0.1 CONFIDENCE 95.0%

BlinkDB Architecture

Offline sampling:
» Uniform

i; » Stratified on
[NS different sets of
TABLE —oli - |_ columns
Original E‘ » Different sizes
Data $

A
3

Samples Samples <

BlinkDB Architecture

SELECT foo (*)
FROM TABLE

Query Plan

INTIME 2 SECONDS

‘ TABLE |—>

Original
Data

v

Sample Selection

i

Sampling Module

| Samples Samples

Predict time
and error of the
query for each
sample type

BlinkDB Architecture

)]
SELECT foo (¥) New Query Plan Hive
FROM TABLE —> %
INTIME 2 SECONDS Sample Selection Hadoop| Spark | Presto
I ‘ Parallel
execution
g 1
| ' § Error Bars &
TABLE |—> o I L Confidence Intervals
a
Original = l
(Vg
Data I]: Result
182.23 £+ 5.56
B On-Disk In-Memory (95% Conﬁdence)

Samples Samples

Three Key Sets of Challenges

1. How to accurately estimate the error?
— What about UDFs? (43.6% of Conviva queries)

- What if the error estimate itself is wrong?

2. Given a storage budget, which samples to
build & maintain to support a wide range of
ad-hoc exploratory queries?

3. Given a query, what should be the optimal
sample type and size that can be processed
to meet its constraints?

Closed-Form Error Estimates

Central Limit Theorem (CLT)
1. Count: N(np,n(1—p)p)

2. Sum: N(npp,np(c® + (1 —p)u?))
3. Mean: N(u,0%/n)

4. Variance: N (o2, (uy —o*)/n)

5. Stddev: N(o, (us — o*)/(40%n))

What about more complex queries?
» UDFs, nested queries, joins, ...

Bootstrap (efron 1979

Quantify accuracy of a sample estimator f()

- can’t compute f(X)

—> f(X) as we don‘t have X
random
ﬂsample

—> f(S) whatisf(S)'s error?
samplin S |
A

replacement - '
S
0 :>f(k) — eestimator: mean(f(S,))

IS.| =N *error, e.g.: stdev(f(S)))

Bootstrap
Quantify accuracy of a query on a sample table

Original
r%'gfe I —> O(T) O(T) takes too long!

ﬂ sample

S|=N—2 what is O(S)’s error?

sampling
with
replacement

sestimator: mean(f(S,))
*error, e.g.: Std@V(f(Si))

Bootstrap

1. Bootstrap treats Q as a black-box

» Can handle (almost) arbitrarily complex queries
including UDFs!

2. Embarrassingly Parallel

Uses too

many

resources in

the cluster

Error Estimation
1. CLT-based closed forms:
» Fast but limited to simple aggregates

2. Bootstrap (Monte Carlo simulation):

»> Expensive but general

3. Analytical Bootstrap Method (ABM):

» Fast and general
v’ (some restrictions, e.g. no UDF, some self joins, ...)

Analytical Bootstrap Method*
Key Idea:

1. Annotate tuples w/ integer random variables
» Probabilistic Multiset Database

2. Extend relational operators to manipulate
these random variables

3. Use a single execution to estimate the
empirical distribution

* The Analytical Bootstrap: A New Method for Fast Error Estimation in Approximate
Query Processing, K. Zeng, G. Shi, B. Mozafari, C. Zaniolo, under submission

TPC-H Experiment &&=

ABM ———

1076 : ;
osbB DB R RRTE 01 . _;
1004 E 13
1073 |F]
1072 | ' .
oM E LD L R _ .
10%0 F ' ' N H i 3
10M1 L :

©, Q Qe QO QO O,OQ,}O<3 O,yO,@O,)O@Q’@O@Oo@@

Execution Time(S)

ABM is 2-4 orders of magnitude faster than
simulation-based implementations of bootstrap

Three Key Sets of Challenges

1. How to accurately estimate the error?
— What about UDFs? (43.6% of Conviva queries)

- What if the error estimate itself is wrong?

2. Given a storage budget, which samples to
build & maintain to support a wide range of
ad-hoc exploratory queries?

3. Given a query, what should be the optimal
sample type and size that can be processed
to meet its constraints?

Problem with Uniform
Samples

Uniform Sample

II!—) ﬂ sampling
22 50,000 Rafe
2 AnnArbor 25 120,242 22

3 NYC 25 78,212 5 NYC 34 98,341 1/3

4 NYC 67 62,492

5 NYC 34 98,341

6 AnnArbor 62 78,453 SELECT avg(salary)
FROM table
WHERE city = ‘Ann Arbor’

Problem with Uniform
Samples

Larger Uniform Sample

Rate
50,000

3 78,212
120,242
28,212 5 NYC 34 98,341 2/3
1 NYC 22 50,000 2/3
2 AnnArbor 25 120,242 2/3
6 AmnArbor 62 78,453 SELECT avg(salary)

FROM table
WHERE city = ‘Ann Arbor’

Stratified Samples

Stratified Sample on City

Rate
1 INYC 50,000
2 | AnnArbor 120,242 p2lo2
3 INYC 28 212 5 AnnArbor 25 120,242 1/2
4 INYC 62,492
5 |NYC 98,341
g Eatlkali-s 78453 SELECT avg(salary)

FROM table
WHERE city = ‘Ann Arbor’
AND age > 60

Target Workload

5. Data is high-dimensional & skewed: +100
columns

Which Stratified Samples to Build?

For n columns, 2" possible stratified samples

Modern data warehouses: n = 100-200

Our solution: Choosing the best set of
samples by considering

1. Columns queried together
2. Data distribution

3. Storage costs

Optimal Set of Samples

Age Salary

NYC
NYC

Ann Arbor

NYC
NYC
Berkeley
NYC
NYC
Berkeley

Berkeley
NYC
Ann Arbor

50,000
62,492
78,212
120,242
98,341
75/453
60,000
72,492
88,212
92,242
70,000

102,492

[City]

[Age]

[Salary]

[City, Age]

[Age,

[City,

Salary]

Salary]

[City, Age, Salary]

Query Coverage

[City]

[Age]
SELECT AVG (...)

FROM Table [Salary]

WHERE Age = x [City, Age]

[Age, Salary]

[City, Salary]

[City, Age, Salary]

Query Coverage

SELECT AVG (...)

FROM Table
WHERE Age = x

[City]

[Age]
REIEIRY
[City, Age]
[Age, Salary]

[City, Salary]

[City, Age, Salary]

0%

100%

0%

100%

100%

0%

100%

Query Coverage

[City]
[Age]
SELECT AVG (...)
FROM Table Salary]
WHERE Age = x AND [City, Age]
City =2

[Age, Salary]

[City, Salary]

[City, Age, Salary]

Query Coverage

[City]
[Age]
SELECT AVG (...)
FROM Table [Salary]
WHERE Age = x AND City, Agel 100%
City =2

[Age, Salary]
[City, Salary]

[City, Age, Salary] 100%

Query Coverage

[City] ?

[Age] ?

SELECT AVG (...)

FROM Table [Salary] 0%
WHERE Age = x AND (City, Age] 100%
City =2

[Age, Salary] ?

[City, Salary] ?

[City, Age, Salary] 100%

Query Coverage

[City] 50%

[Age] 83%
SELECT AVG (...)

FROM Table [Salary] 0%
WHERE Age = x AND City, Age] 100%
City =2
[Age, Salary] 100%
. . |D(¢:)
Vi y:< max Z; mini, 100%
J y] i:¢iEQjUi1¢iDQj(|D(q])|) [Clty, Salary] (V

[City, Age, Salary] 100%

Cost of Stratification

Age Stratified Sample on
NYC 25 50,000 [City]

NYC 25 80,000

AnnArbor |35 80,000 m City
NYC 25 120,000 - NYC 50,000 2[7
NYC 25 80,000 8 NYC 70,000 2/7

Berkeley 25 80,000 6
NYC 25 60,000
NYC 25 70,000

Berkeley 80,000 2/3
10 |Berkeley 90,000 2/3
3 Ann Arbor 80,000 1
Berkeley |30 80,000 12 | AnnArbor 100,000 1
Berkeley 25 90,000
NYC 40 80,000

Ann Arbor | 45 100,000

Cost of Stratification
D |City |Age Salary

1 NYC 25 [50,000

Stratified Sample on

[Salary]

2 NYC 25 [80,000 _
City
3 AnnArbor 35 80,000 m_
1 NYC 50,000
4 NYC 25 120,000
7 NYC 60,000
5 NYC 25 | 80,000
8 NYC 70,000
6 Berkeley 25 {80,000 Y .
o 3 —— 3 Ann Arbor 0,000
; c > - 9 Berkeley 80,000
NY 2 0,000
I T 10 Berkeley 90,000
9 Berkeley 30 | 80,000

12 AnnArbor 100,000

10 Berkele 2 0,000
Y S 4 NYC 120,000

112 NYC 40 | 80,000

12 AnnArbor 45 100,000

MILP Formulation

Maximize G = Zp]y]A(q],M)
J
subject to

i\S(gb,-,K)yzi <C

MILP Formulation

Maximize G = Zp]y]A(q],M)
J

subject to

Cost of all <C
Samples

MILP Formulation

1yj-A(qj, M)

Cost of all <C

Probability of each Query

Maximize G = ij
J
subject to
Samples
pj =

Type in the Workload

MILP Formulation

Maximize G = ij 1 Aqj, M)
j

subject to
Cost of all <C
Samples
yi < Coverage Probability of each

query Type

MILP Formulation

Maximize

subject to

Vi

11A(g;> M)

G =) [P;
J

Cost of all <C

Samples

A(gj, M) =

Sparsity
Function

Experimental Setup

* Conviva: 30-day log of media accesses by
Conviva users. Raw data 17 TB, partitioned
this data across 100 nodes

* Log of 17,000 queries (a sample of 200
queries had 17 templates).

* 50% of storage budget: 8 Stratified Samples

CONVIVA

Query Response Time

Sampling Vs. No Sampling

(seconds)

100000

10000

1000

100

10

=

o e, T

I'|'_I"'I_I'I'I'I11]'_I"I_I'I1111|"_I"I_I'I'Il'l'l'l"—l'"l'l'

|’_'I"I-I'I'|'I'I

2.5TB

Hive I
Shark IaIadig

7.5TB

Input Data Size (TB)

Query Response Time

BlinkDB: Evaluation

Hive I
Shark IaIadig

(seconds)

=

o

o

o
r|‘_l"ﬂ'l'l111|‘_l"l'l111'n|"ﬂ"l'l'lll'l1'|"ﬂ"11'l'l'

=
o

=
[—1'1-rrm

2.5TB 7.5TB
Input Data Size (TB)

Query Response Time

BlinkDB: Evaluation

100000 oo T T
t Hive I

Shark IaIadig
10000

1000

g 200-300x
...................... 5 e Faster!

(seconds)

100

ceecceccscsccsscacseans - @ ®OOBO @@ - s e e e e e e e e

I'|'_I"ﬂ'l'l'l'ﬂ"_I"l-l11111|"ﬂ"l_l'lll'l1'|"ﬂ"'|1'

10

[—1'1-rrm

J
e eassc-amn-ce e o amn o o e e o-aum

2.5TB 7.5TB
Input Data Size (TB)

Response Time vs. Error

10000r==- R R T R R |

[1 Uniform Samples —+—
1000| NG Single Column —o—i
[| ' - Multi-Column ——<—

100

10| F

Time (seconds)

1| E

A I T N O
0 5 10f 15 20 25 30 | 35

Statistical Error (%)

Time Guarantees

12
Q

£ 10
|_

am 8
S 2
aS ©
th)(l)
=2 4
©

D)

B 2
<

I S N N N N N N
2 3 4 5 o6 7 8 9 10

Requested Response Time (seconds)

Error Guarantees

35 o e A s
30 5 5 5 : '
25
20
15
10

Actual Error (%)

1 2 4 8 16 32
Requested Error Bound (%)

Related Work

Low flexibility /
High Efficiency

Flexibility
_—

Efficiency
<

High flexibility /
Low Efficiency

Predictable
Queries

Sketches,
Wavelets,
Histograms,
Join Synopses

Predictable
Access
Patterns

STRAT
SciBORQ

Predictable

Query
Column Sets

AQUA
BlinkDB

2

Unpredictable
Queries

OLA

Taxonomy of Workload Models

A

BlinkDB is Open Sourced!
http://blinkdb.org

Deployed and used by

Integrated into Presto

Conclusion

* Approximation is an important means to
achieve interactivity in the big data age

* Ad-hoc exploratory queries on an
optimal set of multi-dimensional
stratified samples converges to lower
errors 2-3 orders of magnitude faster
than non-optimal strategies

References

Blink and It's Done: Interactive Queries on Very
Large Data, S. Agarwal, A. Panda, B. Mozafari, A.
lyer, S. Madden, I. Stoica, VLDB 2012 demo

BlinkDB: Queries with Bounded Errors and
Bounded Response Times on Very Large Data, S.
Agarwal, B. Mozafari, A. Panda, H. Milner, S.
Madden, |. Stoica, EuroSys 2013 [Best Paper Award]

The Analytical Bootstrap: A New Method for Fast
Error Estimation in Approximate Query
Processing, K. Zeng, G. Shi, B. Mozafari, C. Zaniolo,
under submission

Backup Slides

