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My	
  Research	
  …	
  
Using	
  statistics	
  to	
  build	
  better	
  data-­‐
intensive	
  systems	
  

1.   More	
  predictable	
  
Ø How	
  to	
  predict	
  resources	
  in	
  a	
  DB?	
  
Ø How	
  to	
  design	
  a	
  more	
  predictable	
  DB?	
  

2.   More	
  scalable	
  
Ø How	
  to	
  scale	
  crowdsourcing?	
  
Ø How	
  to	
  query	
  petabytes	
  of	
  data	
  in	
  seconds?	
  



Online	
  Media	
  Websites	
  
Real-­‐Ime	
  Ad-­‐performance,	
  Spam	
  DetecIon	
  

Big	
  Data	
  



Log	
  Processing	
  	
  
Root-­‐cause	
  Analysis,	
  A/B	
  TesIng	
  

Big	
  Data	
  



Overview	
  
Problem:	
  	
  Need	
  to	
  compute	
  aggregate	
  staIsIcs	
  
over	
  massive	
  sets	
  of	
  data	
  

	
  

Our	
  Goal:	
  Support	
  interacIve	
  ad-­‐hoc	
  analyIcal	
  
queries	
  over	
  these	
  large	
  datasets	
  



Hard	
  Disks	
  

1-­‐2	
  Hours	
   25-­‐30	
  Minutes	
   1	
  second	
  

?	
  
Memory	
  

100	
  TB	
  on	
  1000	
  machines	
  



Target	
  Workload	
  
1.   Real-­‐Eme	
  latency	
  is	
  valued	
  over	
  perfect	
  

accuracy	
  

“On a good day, I can run up to 6 
queries in Hive.” 
- Anonymous Data Scientist at 



Target	
  Workload	
  
1.   Real-­‐Eme	
  latency	
  is	
  valued	
  over	
  perfect	
  

accuracy:	
  ≤	
  10	
  sec	
  for	
  interacEve	
  experience	
  

	
  

“On a good day, I can run up to 6 
queries in Hive.” 
- Anonymous Data Scientist at 



Target	
  Workload	
  
1.   Real-­‐Eme	
  latency	
  is	
  valued	
  over	
  perfect	
  

accuracy:	
  ≤	
  10	
  sec	
  for	
  interacEve	
  experience	
  

2.  ExploraIon	
  is	
  ad-­‐hoc	
  

3.  Columns	
  queried	
  together	
  (i.e.,	
  Templates)	
  are	
  
stable	
  over	
  Ime	
  

	
  



1.   Real-­‐Eme	
  latency	
  is	
  valued	
  over	
  perfect	
  
accuracy:	
  ≤	
  10	
  sec	
  for	
  interacEve	
  experience	
  

2.  ExploraIon	
  is	
  ad-­‐hoc	
  

3.  Columns	
  queried	
  together	
  (i.e.,	
  Templates)	
  are	
  
stable	
  over	
  Ime	
  

	
  





















     






















68,785	
  Queries	
  ≈	
  211	
  Templates	
  

90%	
  Queries	
  ≈	
  20%	
  Templates	
  

Target	
  Workload	
  



Target	
  Workload	
  
1.   Real-­‐Eme	
  latency	
  is	
  valued	
  over	
  perfect	
  

accuracy:	
  ≤	
  10	
  sec	
  for	
  interacEve	
  experience	
  

2.  ExploraIon	
  is	
  ad-­‐hoc	
  

3.  Columns	
  queried	
  together	
  (i.e.,	
  Templates)	
  are	
  
stable	
  over	
  Ime	
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


17,437	
  Queries	
  ≈	
  108	
  Templates	
  

90%	
  Queries	
  ≈	
  10%	
  Templates	
  



Target	
  Workload	
  
1.   Real-­‐Eme	
  latency	
  is	
  valued	
  over	
  perfect	
  

accuracy:	
  ≤	
  10	
  sec	
  for	
  interacEve	
  experience	
  

2.  ExploraIon	
  is	
  ad-­‐hoc	
  

3.  Columns	
  queried	
  together	
  (i.e.,	
  Templates)	
  are	
  
stable	
  over	
  Ime	
  

4.  User	
  defined	
  funcIons	
  (UDF)	
  must	
  be	
  
supported:	
  43.6%	
  of	
  Conviva’s	
  queries	
  	
  

5.  Data	
  is	
  high-­‐dimensional	
  &	
  skewed:	
  +100	
  
columns	
  



Hard	
  Disks	
  

1-­‐2	
  Hours	
   25-­‐30	
  Minutes	
   1	
  second	
  

?	
  
Memory	
  

100	
  TB	
  on	
  1000	
  machines	
  

One	
  can	
  ocen	
  make	
  perfect	
  decision	
  without	
  
perfect	
  answers	
  	
  

ApproximaIon	
  Sampling-­‐based	
  ApproximaIon	
  ApproximaIon	
  using	
  Offline	
  Samples	
  



SELECT	
  avg(sessionTime)	
  	
  
FROM	
  Table	
  	
  
WHERE	
  city=‘San	
  Francisco’	
  
WITHIN	
  1	
  SECONDS	
   234.23	
  ±	
  15.32	
  

BlinkDB	
  Interface	
  



SELECT	
  avg(sessionTime)	
  	
  
FROM	
  Table	
  	
  
WHERE	
  city=‘San	
  Francisco’	
  
WITHIN	
  2	
  	
  SECONDS	
   239.46	
  ±	
  4.96	
  

SELECT	
  avg(sessionTime)	
  	
  
FROM	
  Table	
  	
  
WHERE	
  city=‘San	
  Francisco’	
  
ERROR	
  0.1	
  CONFIDENCE	
  95.0%	
  

234.23	
  ±	
  15.32	
  

BlinkDB	
  Interface	
  



BlinkDB	
  Architecture	
  

… 

… 

… 

… 

… 

… 

Offline	
  sampling:	
  
» Uniform	
  
» Stratified	
  on	
  
different	
  sets	
  of	
  
columns	
  
» Different	
  sizes	
  

TABLE	
  

Original	
  	
  
Data	
  

In-­‐Memory	
  
Samples	
  

On-­‐Disk	
  
Samples	
  

Sa
m
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g	
  
M
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e	
  



BlinkDB	
  Architecture	
  
Sa

m
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in
g	
  
M
od

ul
e	
   …	
  

…	
  

…	
  

…	
  

…	
  

…	
  

Predict	
  time	
  
and	
  error	
  of	
  the	
  
query	
  for	
  each	
  
sample	
  type	
  

TABLE	
  

Original	
  	
  
Data	
  

In-­‐Memory	
  
Samples	
  

On-­‐Disk	
  
Samples	
  

	
  
SELECT	
  	
  foo	
  (*)	
  
FROM	
  TABLE	
  
IN	
  TIME	
  2	
  SECONDS	
  

Query	
  Plan	
  

Sample	
  Selection	
  



BlinkDB	
  Architecture	
  
Sa

m
pl
in
g	
  
M
od

ul
e	
  

… 

… 

… 

… 

… 

… 

In-­‐Memory	
  
Samples	
  

On-­‐Disk	
  
Samples	
  

Error	
  Bars	
  &	
  
Confidence	
  Intervals	
  

Result	
  
182.23	
  ±	
  5.56	
  

(95%	
  confidence)	
  

Parallel	
  
execution	
  

TABLE	
  

Original	
  	
  
Data	
  

New	
  Query	
  Plan	
  

Sample	
  Selection	
  

	
  
SELECT	
  	
  foo	
  (*)	
  
FROM	
  TABLE	
  
IN	
  TIME	
  2	
  SECONDS	
  

Hive	
  
Hadoop	
   Spark	
   Presto	
  



1.  How	
  to	
  accurately	
  estimate	
  the	
  error?	
  
-  What	
  about	
  UDFs?	
  (43.6%	
  of	
  Conviva	
  queries)	
  
-  What	
  if	
  the	
  error	
  estimate	
  itself	
  is	
  wrong?	
  

2.  Given	
  a	
  storage	
  budget,	
  which	
  samples	
  to	
  
build	
  &	
  maintain	
  to	
  support	
  a	
  wide	
  range	
  of	
  
ad-­‐hoc	
  exploratory	
  queries?	
  

3.  Given	
  a	
  query,	
  what	
  should	
  be	
  the	
  optimal	
  
sample	
  type	
  and	
  size	
  that	
  can	
  be	
  processed	
  
to	
  meet	
  its	
  constraints?	
  

Three	
  Key	
  Sets	
  of	
  Challenges	
  



Closed-­‐Form	
  Error	
  Estimates	
  

Closed form approximations to variance of sample

estimators for BlinkDB

Henry Milner

04/06/13

Notation:

1. µ = E[X]

2. µk is the kth central moment of the underlying distribution, E[(X�E[X])

k
]

(note that µ1 = 0, not µ)

3. �2
= µ2

2 is the variance of the underlying distribution

4. p is the frequency of rows (the probability that a row matches the filter

predicate for the query)

The following results are (asymptotically in sample size) true, but not di-

rectly useful, since they depend on unknown properties of the underlying dis-

tribution. In all cases we just plug in the sample values. For example, instead

of µ we use

1
n

Pn
i=1 Xi where Xi is the ith sample value.

Note that for estimators other than sum and count, I assume no filtering

(p = 1). Filtering will increase variance a bit, or potentially a lot for extremely

selective queries (p = 0). I can compute the filtering-adjusted values if you like.

1. Count: N(np, n(1� p)p)

2. Sum: N(npµ, np(�2
+ (1� p)µ2

))

3. Mean: N(µ,�2/n)

4. Variance: N(�2, (µ4 � �4
)/n)

5. Stddev: N(�, (µ4 � �4
)/(4�2n))

1

What about more complex queries? 
Ø  UDFs, nested queries, joins, ... 

Central Limit Theorem (CLT) 



Bootstrap	
  [Efron	
  1979]	
  
Quantify	
  accuracy	
  of	
  a	
  sample	
  estimator	
  	
  f() 

f (X)  

S 

random	
  
sample	
  

Distribution	
  X 

|S| = N f (S) 

can’t	
  compute	
  f (X)  
as	
  we	
  don’t	
  have	
  X 

what	
  is	
  f(S)’s	
  error? 

S1 

Sk 

…
	
  

f (S1) 

f (Sk) 

…
	
  

|Si| = N 

sampling	
  
with	
  	
  

replacement	
  

• estimator:	
  mean(f(Si)) 
• error,	
  e.g.:	
  stdev(f(Si)) 



Quantify	
  accuracy	
  of	
  a	
  query	
  on	
  a	
  sample	
  table 

Q(T)  Q(T) takes	
  too	
  long! 

Q(S) what	
  is	
  Q(S)’s	
  error? 

sample	
  

|S| = N S 

T Original	
  	
  
Table	
  

Q (S1) 

Q (Sk) 

…
	
  

|Si| = N 

sampling	
  
with	
  	
  

replacement	
  

S1 

Sk 

…
	
  

Bootstrap	
  

• estimator:	
  mean(f(Si)) 
• error,	
  e.g.:	
  stdev(f(Si)) 



Q (S1) 

Q (Sk) 

…
	
  S1 

Sk 

…
	
  

Bootstrap	
  
1.  Bootstrap	
  treats	
  Q	
  as	
  a	
  black-­‐box	
  	
  
Ø  Can	
  handle	
  (almost)	
  arbitrarily	
  complex	
  queries	
  

including	
  UDFs!	
  

2.   Embarrassingly	
  Parallel	
  

Uses	
  too	
  
many	
  
resources	
  in	
  
the	
  cluster	
  



Error	
  EsEmaEon	
  
1.	
  CLT-­‐based	
  closed	
  forms:	
  
Ø  Fast	
  but	
  limited	
  to	
  simple	
  aggregates	
  

2.	
  Bootstrap	
  (Monte	
  Carlo	
  simulation):	
  

Ø  Expensive	
  but	
  general	
  

3.	
  Analytical	
  Bootstrap	
  Method	
  (ABM):	
  

Ø  Fast	
  and	
  general	
  	
  
ü  (some	
  restrictions,	
  e.g.	
  no	
  UDF,	
  some	
  self	
  joins,	
  ...)	
  



AnalyEcal	
  Bootstrap	
  Method*	
  
Key	
  Idea:	
  

1.  Annotate	
  tuples	
  w/	
  integer	
  random	
  variables	
  
Ø  Probabilistic	
  Multiset	
  Database	
  

2.  Extend	
  relational	
  operators	
  to	
  manipulate	
  
these	
  random	
  variables	
  	
  

3.  Use	
  a	
  single	
  execution	
  to	
  estimate	
  the	
  
empirical	
  distribution	
  	
  

	
  

sum	
   sum	
  

div	
  

filter1	
   filter2	
  

y,	
  ε2	
  x,	
  ε1	
  

S 

Every	
  error	
  propagation	
  step	
  may	
  
introduce	
  additional	
  error	
  	
  	
  

r	
  =	
  x/y,	
  ε	
  =	
  epr(ε1,	
  ε2)	
  
* The Analytical Bootstrap: A New Method for Fast Error Estimation in Approximate 
Query Processing, K. Zeng, G. Shi, B. Mozafari, C. Zaniolo, under submission 



TPC-­‐H	
  Experiment	
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ABM is 2-4 orders of magnitude faster than 
simulation-based implementations of bootstrap 



1.  How	
  to	
  accurately	
  estimate	
  the	
  error?	
  
-  What	
  about	
  UDFs?	
  (43.6%	
  of	
  Conviva	
  queries)	
  
-  What	
  if	
  the	
  error	
  estimate	
  itself	
  is	
  wrong?	
  

2.  Given	
  a	
  storage	
  budget,	
  which	
  samples	
  to	
  
build	
  &	
  maintain	
  to	
  support	
  a	
  wide	
  range	
  of	
  
ad-­‐hoc	
  exploratory	
  queries?	
  

3.  Given	
  a	
  query,	
  what	
  should	
  be	
  the	
  optimal	
  
sample	
  type	
  and	
  size	
  that	
  can	
  be	
  processed	
  
to	
  meet	
  its	
  constraints?	
  

Three	
  Key	
  Sets	
  of	
  Challenges	
  



Problem	
  with	
  Uniform	
  
Samples	
  

SELECT	
  avg(salary)	
  
FROM	
  table	
  
WHERE	
  city	
  =	
  ‘Ann	
  Arbor’	
  

ID	
   City	
   Age	
   Salary	
  

1	
   NYC	
   22	
   50,000	
  

2	
   Ann	
  Arbor	
   25	
   120,242	
  

3	
   NYC	
   25	
   78,212	
  

4	
   NYC	
   67	
   62,492	
  

5	
   NYC	
   34	
   98,341	
  

6	
   Ann	
  Arbor	
   62	
   78,453	
  

Uniform	
  Sample	
  
ID	
   City	
   Age	
   Salary	
   Sampling	
  

Rate	
  

3	
   NYC	
   25	
   78,212	
   1/3	
  

5	
   NYC	
   34	
   98,341	
   1/3	
  



ID	
   City	
   Age	
   Salary	
   Sampling	
  
Rate	
  

3	
   NYC	
   25	
   78,212	
   1/3	
  

5	
   NYC	
   34	
   98,341	
   1/3	
  

Problem	
  with	
  Uniform	
  
Samples	
  

Larger	
  
ID	
   City	
   Age	
   Salary	
   Sampling	
  

Rate	
  

3	
   NYC	
   25	
   78,212	
   2/3	
  

5	
   NYC	
   34	
   98,341	
   2/3	
  

1	
   NYC	
   22	
   50,000	
   2/3	
  

2	
   Ann	
  Arbor	
   25	
   120,242	
   2/3	
  

ID	
   City	
   Age	
   Salary	
  

1	
   NYC	
   22	
   50,000	
  

2	
   Ann	
  Arbor	
   25	
   120,242	
  

3	
   NYC	
   25	
   78,212	
  

4	
   NYC	
   67	
   62,492	
  

5	
   NYC	
   34	
   98,341	
  

6	
   Ann	
  Arbor	
   62	
   78,453	
   SELECT	
  avg(salary)	
  
FROM	
  table	
  
WHERE	
  city	
  =	
  ‘Ann	
  Arbor’	
  

Uniform	
  Sample	
  



Stratified	
  Samples	
  

AND	
  age	
  >	
  60	
  

Stratified Sample on City 

ID	
   City	
   Age	
   Salary	
   Sampling	
  
Rate	
  

3	
   NYC	
   67	
   62,492	
   1/4	
  

5	
   Ann	
  Arbor	
   25	
   120,242	
   1/2	
  

ID	
   City	
   Age	
   Salary	
  

1	
   NYC	
   22	
   50,000	
  

2	
   Ann	
  Arbor	
   25	
   120,242	
  

3	
   NYC	
   25	
   78,212	
  

4	
   NYC	
   67	
   62,492	
  

5	
   NYC	
   34	
   98,341	
  

6	
   Ann	
  Arbor	
   62	
   78,453	
   SELECT	
  avg(salary)	
  
FROM	
  table	
  
WHERE	
  city	
  =	
  ‘Ann	
  Arbor’	
  



Target	
  Workload	
  
1.   Real-­‐Eme	
  latency	
  is	
  valued	
  over	
  perfect	
  

accuracy:	
  ≤	
  10	
  sec	
  for	
  interacEve	
  experience	
  

2.  ExploraIon	
  is	
  ad-­‐hoc	
  

3.  Columns	
  queried	
  together	
  (i.e.,	
  Templates)	
  are	
  
stable	
  over	
  Ime	
  

4.  User	
  defined	
  funcIons	
  (UDF)	
  must	
  be	
  
supported:	
  43.6%	
  of	
  Conviva’s	
  queries	
  	
  

5.  Data	
  is	
  high-­‐dimensional	
  &	
  skewed:	
  +100	
  
columns	
  



Which	
  Stratified	
  Samples	
  to	
  Build?	
  

For	
  n	
  columns,	
  2n	
  possible	
  stratified	
  samples	
  

Modern	
  data	
  warehouses:	
  	
  n	
  ≈	
  100-­‐200	
  

Our	
  solution:	
  Choosing	
  the	
  best	
  set	
  of	
  
samples	
  by	
  considering	
  

1.  Columns	
  queried	
  together	
  

2. Data	
  distribution	
  
3.  Storage	
  costs	
  
	
  

	
  



OpEmal	
  Set	
  of	
  Samples	
  
[City]	
  

ID	
   City	
   Age	
   Salary	
  

1	
   NYC	
   25	
   50,000	
  

2	
   NYC	
   35	
   62,492	
  

3	
   Ann	
  Arbor	
   35	
   78,212	
  

4	
   NYC	
   25	
   120,242	
  

5	
   NYC	
   35	
   98,341	
  

6	
   Berkeley	
   25	
   75,453	
  

7	
   NYC	
   25	
   60,000	
  

8	
   NYC	
   35	
   72,492	
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Figure �. (a) Possible storage layout for strati�ed sample S(�,K).

dimensional strati�ed samples. As described above, each
strati�ed sample can potentially be used at runtime to im-
prove query accuracy and latency, especially when the orig-
inal table contains small groups for a particular column set.
However, each stored sample has a storage cost equal to its
size, and the number of potential samples is exponential in
the number of columns. As a result, we need to be careful
in choosing the set of column-sets on which to build strati-
�ed samples.We formulate the trade-o� between storage cost
and query accuracy/performance as an optimization prob-
lem, described next.

�.�.� Problem Formulation
�e optimization problem takes three factors into account in
determining the sets of columns on which strati�ed samples
should be built: the “sparsity” of the data,workload character-
istics, and the storage cost of samples.

Sparsity of the data. A strati�ed sample on � is useful when
the original table T contains many small groups under �.
Consider aQCS � in table T . Recall thatD(�) denotes the set
of all distinct values on columns � in rows of T . We de�ne a
“sparsity” function ∆(�,M) as the number of groups whose
size in T is less than some number M�:

∆(�,M) = �{x ∈ D(�) ∶ �Tx � < M}�
Workload.A strati�ed sample is only useful when it is bene-
�cial to actual queries. Under our model for queries, a query
has a QCS q j with some (unknown) probability p j - that is,
QCSs are drawn from aMultinomial (p� , p� , ...) distribution.
�e best estimate of p j is simply the frequency of queries with
QCS q j in past queries.

Storage cost. Storage is the main constraint against build-
ing too many strati�ed samples, and against building strat-
i�ed samples on large column sets that produce too many
groups. �erefore, we must compute the storage cost of po-
tential samples and constrain total storage. To simplify the
formulation, we assume a single value of K for all samples;
a sample family � either receives no samples or a full sam-
ple with K elements of Tx for each x ∈ D(�). �S(�,K)� is the
storage cost (in rows) of building a strati�ed sample on a set
of columns �.
�Appropriate values for M will be discussed later in this section. Alterna-
tively, one could plug in di�erent notions of sparsity of a distribution in our
formulation.

Given these three factors de�ned above, we now introduce
our optimization formulation. Let the overall storage capacity
budget (again in rows) be C. Our goal is to select β column
sets from among m possible QCSs, say � i� ,�, � iβ , which can
best answer our queries, while satisfying:

β�
k=�
�S(� ik ,K)� ≤ C

Speci�cally, inBlinkDB, wemaximize the followingmixed
integer linear program (MILP) in which j indexes over all
queries and i indexes over all possible column sets:

G =�
j
p j ⋅ y j ⋅ ∆(q j ,M) (�)

subject to
m�
i=� �S(� i ,K)� ⋅ zi ≤ C (�)

and

∀ j ∶ y j ≤ max
i∶� i⊆q j∪i∶� i⊃q j

(zi min �,
�D(� i)��D(q j)� ) (�)

where � ≤ y j ≤ � and zi ∈ {�, �} are variables.
Here, zi is a binary variable determiningwhether a sample

family should be built or not, i.e., when zi = �, we build a
sample family on � i ; otherwise, when zi = �, we do not.

�e goal function (�) aims to maximize the weighted sum
of the coverage of the QCSs of the queries, q j . If we create a
strati�ed sample S(� i ,K), the coverage of this sample for q j
is de�ned as the probability that a given value x of columns q j
is also present among the rows of S(� i ,K). If � i ⊇ q j , then q j
is covered exactly, but � i ⊂ q j can also be useful by partially
covering q j . At runtime, if no strati�ed sample is available that
exactly covers a theQCS for a query, a partially-coveringQCS
may be used instead. In particular, the uniform sample is a
degenerate case with � i = �; it is useful for many queries but
less useful than more targeted strati�ed samples.

Since the coverage probability is hard to compute in prac-
tice, in this paper we approximate it by y j , which is deter-
mined by constraint (�).�e y j value is in [�, �], with �mean-
ing no coverage, and � meaning full coverage. �e intuition
behind (�) is that when we build a strati�ed sample on a
subset of columns � i ⊆ q j , i.e. when zi = �, we have par-
tially covered q j , too. We compute this coverage as the ra-
tio of the number of unique values between the two sets, i.e.,
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Figure �. (a) Possible storage layout for strati�ed sample S(�,K).

dimensional strati�ed samples. As described above, each
strati�ed sample can potentially be used at runtime to im-
prove query accuracy and latency, especially when the orig-
inal table contains small groups for a particular column set.
However, each stored sample has a storage cost equal to its
size, and the number of potential samples is exponential in
the number of columns. As a result, we need to be careful
in choosing the set of column-sets on which to build strati-
�ed samples.We formulate the trade-o� between storage cost
and query accuracy/performance as an optimization prob-
lem, described next.

�.�.� Problem Formulation
�e optimization problem takes three factors into account in
determining the sets of columns on which strati�ed samples
should be built: the “sparsity” of the data,workload character-
istics, and the storage cost of samples.

Sparsity of the data. A strati�ed sample on � is useful when
the original table T contains many small groups under �.
Consider aQCS � in table T . Recall thatD(�) denotes the set
of all distinct values on columns � in rows of T . We de�ne a
“sparsity” function ∆(�,M) as the number of groups whose
size in T is less than some number M�:

∆(�,M) = �{x ∈ D(�) ∶ �Tx � < M}�
Workload.A strati�ed sample is only useful when it is bene-
�cial to actual queries. Under our model for queries, a query
has a QCS q j with some (unknown) probability p j - that is,
QCSs are drawn from aMultinomial (p� , p� , ...) distribution.
�e best estimate of p j is simply the frequency of queries with
QCS q j in past queries.

Storage cost. Storage is the main constraint against build-
ing too many strati�ed samples, and against building strat-
i�ed samples on large column sets that produce too many
groups. �erefore, we must compute the storage cost of po-
tential samples and constrain total storage. To simplify the
formulation, we assume a single value of K for all samples;
a sample family � either receives no samples or a full sam-
ple with K elements of Tx for each x ∈ D(�). �S(�,K)� is the
storage cost (in rows) of building a strati�ed sample on a set
of columns �.
�Appropriate values for M will be discussed later in this section. Alterna-
tively, one could plug in di�erent notions of sparsity of a distribution in our
formulation.

Given these three factors de�ned above, we now introduce
our optimization formulation. Let the overall storage capacity
budget (again in rows) be C. Our goal is to select β column
sets from among m possible QCSs, say � i� ,�, � iβ , which can
best answer our queries, while satisfying:

β�
k=�
�S(� ik ,K)� ≤ C

Speci�cally, inBlinkDB, wemaximize the followingmixed
integer linear program (MILP) in which j indexes over all
queries and i indexes over all possible column sets:

G =�
j
p j ⋅ y j ⋅ ∆(q j ,M) (�)

subject to
m�
i=� �S(� i ,K)� ⋅ zi ≤ C (�)

and

∀ j ∶ y j ≤ max
i∶� i⊆q j∪i∶� i⊃q j

(zi min �,
�D(� i)��D(q j)� ) (�)

where � ≤ y j ≤ � and zi ∈ {�, �} are variables.
Here, zi is a binary variable determiningwhether a sample

family should be built or not, i.e., when zi = �, we build a
sample family on � i ; otherwise, when zi = �, we do not.

�e goal function (�) aims to maximize the weighted sum
of the coverage of the QCSs of the queries, q j . If we create a
strati�ed sample S(� i ,K), the coverage of this sample for q j
is de�ned as the probability that a given value x of columns q j
is also present among the rows of S(� i ,K). If � i ⊇ q j , then q j
is covered exactly, but � i ⊂ q j can also be useful by partially
covering q j . At runtime, if no strati�ed sample is available that
exactly covers a theQCS for a query, a partially-coveringQCS
may be used instead. In particular, the uniform sample is a
degenerate case with � i = �; it is useful for many queries but
less useful than more targeted strati�ed samples.

Since the coverage probability is hard to compute in prac-
tice, in this paper we approximate it by y j , which is deter-
mined by constraint (�).�e y j value is in [�, �], with �mean-
ing no coverage, and � meaning full coverage. �e intuition
behind (�) is that when we build a strati�ed sample on a
subset of columns � i ⊆ q j , i.e. when zi = �, we have par-
tially covered q j , too. We compute this coverage as the ra-
tio of the number of unique values between the two sets, i.e.,
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Figure �. (a) Possible storage layout for strati�ed sample S(�,K).

dimensional strati�ed samples. As described above, each
strati�ed sample can potentially be used at runtime to im-
prove query accuracy and latency, especially when the orig-
inal table contains small groups for a particular column set.
However, each stored sample has a storage cost equal to its
size, and the number of potential samples is exponential in
the number of columns. As a result, we need to be careful
in choosing the set of column-sets on which to build strati-
�ed samples.We formulate the trade-o� between storage cost
and query accuracy/performance as an optimization prob-
lem, described next.

�.�.� Problem Formulation
�e optimization problem takes three factors into account in
determining the sets of columns on which strati�ed samples
should be built: the “sparsity” of the data,workload character-
istics, and the storage cost of samples.

Sparsity of the data. A strati�ed sample on � is useful when
the original table T contains many small groups under �.
Consider aQCS � in table T . Recall thatD(�) denotes the set
of all distinct values on columns � in rows of T . We de�ne a
“sparsity” function ∆(�,M) as the number of groups whose
size in T is less than some number M�:

∆(�,M) = �{x ∈ D(�) ∶ �Tx � < M}�
Workload.A strati�ed sample is only useful when it is bene-
�cial to actual queries. Under our model for queries, a query
has a QCS q j with some (unknown) probability p j - that is,
QCSs are drawn from aMultinomial (p� , p� , ...) distribution.
�e best estimate of p j is simply the frequency of queries with
QCS q j in past queries.

Storage cost. Storage is the main constraint against build-
ing too many strati�ed samples, and against building strat-
i�ed samples on large column sets that produce too many
groups. �erefore, we must compute the storage cost of po-
tential samples and constrain total storage. To simplify the
formulation, we assume a single value of K for all samples;
a sample family � either receives no samples or a full sam-
ple with K elements of Tx for each x ∈ D(�). �S(�,K)� is the
storage cost (in rows) of building a strati�ed sample on a set
of columns �.
�Appropriate values for M will be discussed later in this section. Alterna-
tively, one could plug in di�erent notions of sparsity of a distribution in our
formulation.

Given these three factors de�ned above, we now introduce
our optimization formulation. Let the overall storage capacity
budget (again in rows) be C. Our goal is to select β column
sets from among m possible QCSs, say � i� ,�, � iβ , which can
best answer our queries, while satisfying:

β�
k=�
�S(� ik ,K)� ≤ C

Speci�cally, inBlinkDB, wemaximize the followingmixed
integer linear program (MILP) in which j indexes over all
queries and i indexes over all possible column sets:

G =�
j
p j ⋅ y j ⋅ ∆(q j ,M) (�)

subject to
m�
i=� �S(� i ,K)� ⋅ zi ≤ C (�)

and

∀ j ∶ y j ≤ max
i∶� i⊆q j∪i∶� i⊃q j

(zi min �,
�D(� i)��D(q j)� ) (�)

where � ≤ y j ≤ � and zi ∈ {�, �} are variables.
Here, zi is a binary variable determiningwhether a sample

family should be built or not, i.e., when zi = �, we build a
sample family on � i ; otherwise, when zi = �, we do not.

�e goal function (�) aims to maximize the weighted sum
of the coverage of the QCSs of the queries, q j . If we create a
strati�ed sample S(� i ,K), the coverage of this sample for q j
is de�ned as the probability that a given value x of columns q j
is also present among the rows of S(� i ,K). If � i ⊇ q j , then q j
is covered exactly, but � i ⊂ q j can also be useful by partially
covering q j . At runtime, if no strati�ed sample is available that
exactly covers a theQCS for a query, a partially-coveringQCS
may be used instead. In particular, the uniform sample is a
degenerate case with � i = �; it is useful for many queries but
less useful than more targeted strati�ed samples.

Since the coverage probability is hard to compute in prac-
tice, in this paper we approximate it by y j , which is deter-
mined by constraint (�).�e y j value is in [�, �], with �mean-
ing no coverage, and � meaning full coverage. �e intuition
behind (�) is that when we build a strati�ed sample on a
subset of columns � i ⊆ q j , i.e. when zi = �, we have par-
tially covered q j , too. We compute this coverage as the ra-
tio of the number of unique values between the two sets, i.e.,
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Figure �. (a) Possible storage layout for strati�ed sample S(�,K).

dimensional strati�ed samples. As described above, each
strati�ed sample can potentially be used at runtime to im-
prove query accuracy and latency, especially when the orig-
inal table contains small groups for a particular column set.
However, each stored sample has a storage cost equal to its
size, and the number of potential samples is exponential in
the number of columns. As a result, we need to be careful
in choosing the set of column-sets on which to build strati-
�ed samples.We formulate the trade-o� between storage cost
and query accuracy/performance as an optimization prob-
lem, described next.

�.�.� Problem Formulation
�e optimization problem takes three factors into account in
determining the sets of columns on which strati�ed samples
should be built: the “sparsity” of the data,workload character-
istics, and the storage cost of samples.

Sparsity of the data. A strati�ed sample on � is useful when
the original table T contains many small groups under �.
Consider aQCS � in table T . Recall thatD(�) denotes the set
of all distinct values on columns � in rows of T . We de�ne a
“sparsity” function ∆(�,M) as the number of groups whose
size in T is less than some number M�:

∆(�,M) = �{x ∈ D(�) ∶ �Tx � < M}�
Workload.A strati�ed sample is only useful when it is bene-
�cial to actual queries. Under our model for queries, a query
has a QCS q j with some (unknown) probability p j - that is,
QCSs are drawn from aMultinomial (p� , p� , ...) distribution.
�e best estimate of p j is simply the frequency of queries with
QCS q j in past queries.

Storage cost. Storage is the main constraint against build-
ing too many strati�ed samples, and against building strat-
i�ed samples on large column sets that produce too many
groups. �erefore, we must compute the storage cost of po-
tential samples and constrain total storage. To simplify the
formulation, we assume a single value of K for all samples;
a sample family � either receives no samples or a full sam-
ple with K elements of Tx for each x ∈ D(�). �S(�,K)� is the
storage cost (in rows) of building a strati�ed sample on a set
of columns �.
�Appropriate values for M will be discussed later in this section. Alterna-
tively, one could plug in di�erent notions of sparsity of a distribution in our
formulation.

Given these three factors de�ned above, we now introduce
our optimization formulation. Let the overall storage capacity
budget (again in rows) be C. Our goal is to select β column
sets from among m possible QCSs, say � i� ,�, � iβ , which can
best answer our queries, while satisfying:

β�
k=�
�S(� ik ,K)� ≤ C

Speci�cally, inBlinkDB, wemaximize the followingmixed
integer linear program (MILP) in which j indexes over all
queries and i indexes over all possible column sets:

G =�
j
p j ⋅ y j ⋅ ∆(q j ,M) (�)

subject to
m�
i=� �S(� i ,K)� ⋅ zi ≤ C (�)

and

∀ j ∶ y j ≤ max
i∶� i⊆q j∪i∶� i⊃q j

(zi min �,
�D(� i)��D(q j)� ) (�)

where � ≤ y j ≤ � and zi ∈ {�, �} are variables.
Here, zi is a binary variable determiningwhether a sample

family should be built or not, i.e., when zi = �, we build a
sample family on � i ; otherwise, when zi = �, we do not.

�e goal function (�) aims to maximize the weighted sum
of the coverage of the QCSs of the queries, q j . If we create a
strati�ed sample S(� i ,K), the coverage of this sample for q j
is de�ned as the probability that a given value x of columns q j
is also present among the rows of S(� i ,K). If � i ⊇ q j , then q j
is covered exactly, but � i ⊂ q j can also be useful by partially
covering q j . At runtime, if no strati�ed sample is available that
exactly covers a theQCS for a query, a partially-coveringQCS
may be used instead. In particular, the uniform sample is a
degenerate case with � i = �; it is useful for many queries but
less useful than more targeted strati�ed samples.

Since the coverage probability is hard to compute in prac-
tice, in this paper we approximate it by y j , which is deter-
mined by constraint (�).�e y j value is in [�, �], with �mean-
ing no coverage, and � meaning full coverage. �e intuition
behind (�) is that when we build a strati�ed sample on a
subset of columns � i ⊆ q j , i.e. when zi = �, we have par-
tially covered q j , too. We compute this coverage as the ra-
tio of the number of unique values between the two sets, i.e.,
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dimensional strati�ed samples. As described above, each
strati�ed sample can potentially be used at runtime to im-
prove query accuracy and latency, especially when the orig-
inal table contains small groups for a particular column set.
However, each stored sample has a storage cost equal to its
size, and the number of potential samples is exponential in
the number of columns. As a result, we need to be careful
in choosing the set of column-sets on which to build strati-
�ed samples.We formulate the trade-o� between storage cost
and query accuracy/performance as an optimization prob-
lem, described next.

�.�.� Problem Formulation
�e optimization problem takes three factors into account in
determining the sets of columns on which strati�ed samples
should be built: the “sparsity” of the data,workload character-
istics, and the storage cost of samples.

Sparsity of the data. A strati�ed sample on � is useful when
the original table T contains many small groups under �.
Consider aQCS � in table T . Recall thatD(�) denotes the set
of all distinct values on columns � in rows of T . We de�ne a
“sparsity” function ∆(�,M) as the number of groups whose
size in T is less than some number M�:

∆(�,M) = �{x ∈ D(�) ∶ �Tx � < M}�
Workload.A strati�ed sample is only useful when it is bene-
�cial to actual queries. Under our model for queries, a query
has a QCS q j with some (unknown) probability p j - that is,
QCSs are drawn from aMultinomial (p� , p� , ...) distribution.
�e best estimate of p j is simply the frequency of queries with
QCS q j in past queries.

Storage cost. Storage is the main constraint against build-
ing too many strati�ed samples, and against building strat-
i�ed samples on large column sets that produce too many
groups. �erefore, we must compute the storage cost of po-
tential samples and constrain total storage. To simplify the
formulation, we assume a single value of K for all samples;
a sample family � either receives no samples or a full sam-
ple with K elements of Tx for each x ∈ D(�). �S(�,K)� is the
storage cost (in rows) of building a strati�ed sample on a set
of columns �.
�Appropriate values for M will be discussed later in this section. Alterna-
tively, one could plug in di�erent notions of sparsity of a distribution in our
formulation.

Given these three factors de�ned above, we now introduce
our optimization formulation. Let the overall storage capacity
budget (again in rows) be C. Our goal is to select β column
sets from among m possible QCSs, say � i� ,�, � iβ , which can
best answer our queries, while satisfying:

β�
k=�
�S(� ik ,K)� ≤ C

Speci�cally, inBlinkDB, wemaximize the followingmixed
integer linear program (MILP) in which j indexes over all
queries and i indexes over all possible column sets:

G =�
j
p j ⋅ y j ⋅ ∆(q j ,M) (�)

subject to
m�
i=� �S(� i ,K)� ⋅ zi ≤ C (�)

and

∀ j ∶ y j ≤ max
i∶� i⊆q j∪i∶� i⊃q j

(zi min �,
�D(� i)��D(q j)� ) (�)

where � ≤ y j ≤ � and zi ∈ {�, �} are variables.
Here, zi is a binary variable determiningwhether a sample

family should be built or not, i.e., when zi = �, we build a
sample family on � i ; otherwise, when zi = �, we do not.

�e goal function (�) aims to maximize the weighted sum
of the coverage of the QCSs of the queries, q j . If we create a
strati�ed sample S(� i ,K), the coverage of this sample for q j
is de�ned as the probability that a given value x of columns q j
is also present among the rows of S(� i ,K). If � i ⊇ q j , then q j
is covered exactly, but � i ⊂ q j can also be useful by partially
covering q j . At runtime, if no strati�ed sample is available that
exactly covers a theQCS for a query, a partially-coveringQCS
may be used instead. In particular, the uniform sample is a
degenerate case with � i = �; it is useful for many queries but
less useful than more targeted strati�ed samples.

Since the coverage probability is hard to compute in prac-
tice, in this paper we approximate it by y j , which is deter-
mined by constraint (�).�e y j value is in [�, �], with �mean-
ing no coverage, and � meaning full coverage. �e intuition
behind (�) is that when we build a strati�ed sample on a
subset of columns � i ⊆ q j , i.e. when zi = �, we have par-
tially covered q j , too. We compute this coverage as the ra-
tio of the number of unique values between the two sets, i.e.,
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dimensional strati�ed samples. As described above, each
strati�ed sample can potentially be used at runtime to im-
prove query accuracy and latency, especially when the orig-
inal table contains small groups for a particular column set.
However, each stored sample has a storage cost equal to its
size, and the number of potential samples is exponential in
the number of columns. As a result, we need to be careful
in choosing the set of column-sets on which to build strati-
�ed samples.We formulate the trade-o� between storage cost
and query accuracy/performance as an optimization prob-
lem, described next.

�.�.� Problem Formulation
�e optimization problem takes three factors into account in
determining the sets of columns on which strati�ed samples
should be built: the “sparsity” of the data,workload character-
istics, and the storage cost of samples.

Sparsity of the data. A strati�ed sample on � is useful when
the original table T contains many small groups under �.
Consider aQCS � in table T . Recall thatD(�) denotes the set
of all distinct values on columns � in rows of T . We de�ne a
“sparsity” function ∆(�,M) as the number of groups whose
size in T is less than some number M�:

∆(�,M) = �{x ∈ D(�) ∶ �Tx � < M}�
Workload.A strati�ed sample is only useful when it is bene-
�cial to actual queries. Under our model for queries, a query
has a QCS q j with some (unknown) probability p j - that is,
QCSs are drawn from aMultinomial (p� , p� , ...) distribution.
�e best estimate of p j is simply the frequency of queries with
QCS q j in past queries.

Storage cost. Storage is the main constraint against build-
ing too many strati�ed samples, and against building strat-
i�ed samples on large column sets that produce too many
groups. �erefore, we must compute the storage cost of po-
tential samples and constrain total storage. To simplify the
formulation, we assume a single value of K for all samples;
a sample family � either receives no samples or a full sam-
ple with K elements of Tx for each x ∈ D(�). �S(�,K)� is the
storage cost (in rows) of building a strati�ed sample on a set
of columns �.
�Appropriate values for M will be discussed later in this section. Alterna-
tively, one could plug in di�erent notions of sparsity of a distribution in our
formulation.

Given these three factors de�ned above, we now introduce
our optimization formulation. Let the overall storage capacity
budget (again in rows) be C. Our goal is to select β column
sets from among m possible QCSs, say � i� ,�, � iβ , which can
best answer our queries, while satisfying:

β�
k=�
�S(� ik ,K)� ≤ C

Speci�cally, inBlinkDB, wemaximize the followingmixed
integer linear program (MILP) in which j indexes over all
queries and i indexes over all possible column sets:

G =�
j
p j ⋅ y j ⋅ ∆(q j ,M) (�)

subject to
m�
i=� �S(� i ,K)� ⋅ zi ≤ C (�)

and

∀ j ∶ y j ≤ max
i∶� i⊆q j∪i∶� i⊃q j

(zi min �,
�D(� i)��D(q j)� ) (�)

where � ≤ y j ≤ � and zi ∈ {�, �} are variables.
Here, zi is a binary variable determiningwhether a sample

family should be built or not, i.e., when zi = �, we build a
sample family on � i ; otherwise, when zi = �, we do not.

�e goal function (�) aims to maximize the weighted sum
of the coverage of the QCSs of the queries, q j . If we create a
strati�ed sample S(� i ,K), the coverage of this sample for q j
is de�ned as the probability that a given value x of columns q j
is also present among the rows of S(� i ,K). If � i ⊇ q j , then q j
is covered exactly, but � i ⊂ q j can also be useful by partially
covering q j . At runtime, if no strati�ed sample is available that
exactly covers a theQCS for a query, a partially-coveringQCS
may be used instead. In particular, the uniform sample is a
degenerate case with � i = �; it is useful for many queries but
less useful than more targeted strati�ed samples.

Since the coverage probability is hard to compute in prac-
tice, in this paper we approximate it by y j , which is deter-
mined by constraint (�).�e y j value is in [�, �], with �mean-
ing no coverage, and � meaning full coverage. �e intuition
behind (�) is that when we build a strati�ed sample on a
subset of columns � i ⊆ q j , i.e. when zi = �, we have par-
tially covered q j , too. We compute this coverage as the ra-
tio of the number of unique values between the two sets, i.e.,
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Figure �. (a) Possible storage layout for strati�ed sample S(�,K).

dimensional strati�ed samples. As described above, each
strati�ed sample can potentially be used at runtime to im-
prove query accuracy and latency, especially when the orig-
inal table contains small groups for a particular column set.
However, each stored sample has a storage cost equal to its
size, and the number of potential samples is exponential in
the number of columns. As a result, we need to be careful
in choosing the set of column-sets on which to build strati-
�ed samples.We formulate the trade-o� between storage cost
and query accuracy/performance as an optimization prob-
lem, described next.

�.�.� Problem Formulation
�e optimization problem takes three factors into account in
determining the sets of columns on which strati�ed samples
should be built: the “sparsity” of the data,workload character-
istics, and the storage cost of samples.

Sparsity of the data. A strati�ed sample on � is useful when
the original table T contains many small groups under �.
Consider aQCS � in table T . Recall thatD(�) denotes the set
of all distinct values on columns � in rows of T . We de�ne a
“sparsity” function ∆(�,M) as the number of groups whose
size in T is less than some number M�:

∆(�,M) = �{x ∈ D(�) ∶ �Tx � < M}�
Workload.A strati�ed sample is only useful when it is bene-
�cial to actual queries. Under our model for queries, a query
has a QCS q j with some (unknown) probability p j - that is,
QCSs are drawn from aMultinomial (p� , p� , ...) distribution.
�e best estimate of p j is simply the frequency of queries with
QCS q j in past queries.

Storage cost. Storage is the main constraint against build-
ing too many strati�ed samples, and against building strat-
i�ed samples on large column sets that produce too many
groups. �erefore, we must compute the storage cost of po-
tential samples and constrain total storage. To simplify the
formulation, we assume a single value of K for all samples;
a sample family � either receives no samples or a full sam-
ple with K elements of Tx for each x ∈ D(�). �S(�,K)� is the
storage cost (in rows) of building a strati�ed sample on a set
of columns �.
�Appropriate values for M will be discussed later in this section. Alterna-
tively, one could plug in di�erent notions of sparsity of a distribution in our
formulation.

Given these three factors de�ned above, we now introduce
our optimization formulation. Let the overall storage capacity
budget (again in rows) be C. Our goal is to select β column
sets from among m possible QCSs, say � i� ,�, � iβ , which can
best answer our queries, while satisfying:

β�
k=�
�S(� ik ,K)� ≤ C

Speci�cally, inBlinkDB, wemaximize the followingmixed
integer linear program (MILP) in which j indexes over all
queries and i indexes over all possible column sets:

G =�
j
p j ⋅ y j ⋅ ∆(q j ,M) (�)

subject to
m�
i=� �S(� i ,K)� ⋅ zi ≤ C (�)

and

∀ j ∶ y j ≤ max
i∶� i⊆q j∪i∶� i⊃q j

(zi min �,
�D(� i)��D(q j)� ) (�)

where � ≤ y j ≤ � and zi ∈ {�, �} are variables.
Here, zi is a binary variable determiningwhether a sample

family should be built or not, i.e., when zi = �, we build a
sample family on � i ; otherwise, when zi = �, we do not.

�e goal function (�) aims to maximize the weighted sum
of the coverage of the QCSs of the queries, q j . If we create a
strati�ed sample S(� i ,K), the coverage of this sample for q j
is de�ned as the probability that a given value x of columns q j
is also present among the rows of S(� i ,K). If � i ⊇ q j , then q j
is covered exactly, but � i ⊂ q j can also be useful by partially
covering q j . At runtime, if no strati�ed sample is available that
exactly covers a theQCS for a query, a partially-coveringQCS
may be used instead. In particular, the uniform sample is a
degenerate case with � i = �; it is useful for many queries but
less useful than more targeted strati�ed samples.

Since the coverage probability is hard to compute in prac-
tice, in this paper we approximate it by y j , which is deter-
mined by constraint (�).�e y j value is in [�, �], with �mean-
ing no coverage, and � meaning full coverage. �e intuition
behind (�) is that when we build a strati�ed sample on a
subset of columns � i ⊆ q j , i.e. when zi = �, we have par-
tially covered q j , too. We compute this coverage as the ra-
tio of the number of unique values between the two sets, i.e.,
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dimensional strati�ed samples. As described above, each
strati�ed sample can potentially be used at runtime to im-
prove query accuracy and latency, especially when the orig-
inal table contains small groups for a particular column set.
However, each stored sample has a storage cost equal to its
size, and the number of potential samples is exponential in
the number of columns. As a result, we need to be careful
in choosing the set of column-sets on which to build strati-
�ed samples.We formulate the trade-o� between storage cost
and query accuracy/performance as an optimization prob-
lem, described next.

�.�.� Problem Formulation
�e optimization problem takes three factors into account in
determining the sets of columns on which strati�ed samples
should be built: the “sparsity” of the data,workload character-
istics, and the storage cost of samples.

Sparsity of the data. A strati�ed sample on � is useful when
the original table T contains many small groups under �.
Consider aQCS � in table T . Recall thatD(�) denotes the set
of all distinct values on columns � in rows of T . We de�ne a
“sparsity” function ∆(�,M) as the number of groups whose
size in T is less than some number M�:

∆(�,M) = �{x ∈ D(�) ∶ �Tx � < M}�
Workload.A strati�ed sample is only useful when it is bene-
�cial to actual queries. Under our model for queries, a query
has a QCS q j with some (unknown) probability p j - that is,
QCSs are drawn from aMultinomial (p� , p� , ...) distribution.
�e best estimate of p j is simply the frequency of queries with
QCS q j in past queries.

Storage cost. Storage is the main constraint against build-
ing too many strati�ed samples, and against building strat-
i�ed samples on large column sets that produce too many
groups. �erefore, we must compute the storage cost of po-
tential samples and constrain total storage. To simplify the
formulation, we assume a single value of K for all samples;
a sample family � either receives no samples or a full sam-
ple with K elements of Tx for each x ∈ D(�). �S(�,K)� is the
storage cost (in rows) of building a strati�ed sample on a set
of columns �.
�Appropriate values for M will be discussed later in this section. Alterna-
tively, one could plug in di�erent notions of sparsity of a distribution in our
formulation.

Given these three factors de�ned above, we now introduce
our optimization formulation. Let the overall storage capacity
budget (again in rows) be C. Our goal is to select β column
sets from among m possible QCSs, say � i� ,�, � iβ , which can
best answer our queries, while satisfying:

β�
k=�
�S(� ik ,K)� ≤ C

Speci�cally, inBlinkDB, wemaximize the followingmixed
integer linear program (MILP) in which j indexes over all
queries and i indexes over all possible column sets:

G =�
j
p j ⋅ y j ⋅ ∆(q j ,M) (�)

subject to
m�
i=� �S(� i ,K)� ⋅ zi ≤ C (�)

and

∀ j ∶ y j ≤ max
i∶� i⊆q j∪i∶� i⊃q j

(zi min �,
�D(� i)��D(q j)� ) (�)

where � ≤ y j ≤ � and zi ∈ {�, �} are variables.
Here, zi is a binary variable determiningwhether a sample

family should be built or not, i.e., when zi = �, we build a
sample family on � i ; otherwise, when zi = �, we do not.

�e goal function (�) aims to maximize the weighted sum
of the coverage of the QCSs of the queries, q j . If we create a
strati�ed sample S(� i ,K), the coverage of this sample for q j
is de�ned as the probability that a given value x of columns q j
is also present among the rows of S(� i ,K). If � i ⊇ q j , then q j
is covered exactly, but � i ⊂ q j can also be useful by partially
covering q j . At runtime, if no strati�ed sample is available that
exactly covers a theQCS for a query, a partially-coveringQCS
may be used instead. In particular, the uniform sample is a
degenerate case with � i = �; it is useful for many queries but
less useful than more targeted strati�ed samples.

Since the coverage probability is hard to compute in prac-
tice, in this paper we approximate it by y j , which is deter-
mined by constraint (�).�e y j value is in [�, �], with �mean-
ing no coverage, and � meaning full coverage. �e intuition
behind (�) is that when we build a strati�ed sample on a
subset of columns � i ⊆ q j , i.e. when zi = �, we have par-
tially covered q j , too. We compute this coverage as the ra-
tio of the number of unique values between the two sets, i.e.,
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dimensional strati�ed samples. As described above, each
strati�ed sample can potentially be used at runtime to im-
prove query accuracy and latency, especially when the orig-
inal table contains small groups for a particular column set.
However, each stored sample has a storage cost equal to its
size, and the number of potential samples is exponential in
the number of columns. As a result, we need to be careful
in choosing the set of column-sets on which to build strati-
�ed samples.We formulate the trade-o� between storage cost
and query accuracy/performance as an optimization prob-
lem, described next.

�.�.� Problem Formulation
�e optimization problem takes three factors into account in
determining the sets of columns on which strati�ed samples
should be built: the “sparsity” of the data,workload character-
istics, and the storage cost of samples.

Sparsity of the data. A strati�ed sample on � is useful when
the original table T contains many small groups under �.
Consider aQCS � in table T . Recall thatD(�) denotes the set
of all distinct values on columns � in rows of T . We de�ne a
“sparsity” function ∆(�,M) as the number of groups whose
size in T is less than some number M�:

∆(�,M) = �{x ∈ D(�) ∶ �Tx � < M}�
Workload.A strati�ed sample is only useful when it is bene-
�cial to actual queries. Under our model for queries, a query
has a QCS q j with some (unknown) probability p j - that is,
QCSs are drawn from aMultinomial (p� , p� , ...) distribution.
�e best estimate of p j is simply the frequency of queries with
QCS q j in past queries.

Storage cost. Storage is the main constraint against build-
ing too many strati�ed samples, and against building strat-
i�ed samples on large column sets that produce too many
groups. �erefore, we must compute the storage cost of po-
tential samples and constrain total storage. To simplify the
formulation, we assume a single value of K for all samples;
a sample family � either receives no samples or a full sam-
ple with K elements of Tx for each x ∈ D(�). �S(�,K)� is the
storage cost (in rows) of building a strati�ed sample on a set
of columns �.
�Appropriate values for M will be discussed later in this section. Alterna-
tively, one could plug in di�erent notions of sparsity of a distribution in our
formulation.

Given these three factors de�ned above, we now introduce
our optimization formulation. Let the overall storage capacity
budget (again in rows) be C. Our goal is to select β column
sets from among m possible QCSs, say � i� ,�, � iβ , which can
best answer our queries, while satisfying:

β�
k=�
�S(� ik ,K)� ≤ C

Speci�cally, inBlinkDB, wemaximize the followingmixed
integer linear program (MILP) in which j indexes over all
queries and i indexes over all possible column sets:

G =�
j
p j ⋅ y j ⋅ ∆(q j ,M) (�)

subject to
m�
i=� �S(� i ,K)� ⋅ zi ≤ C (�)

and

∀ j ∶ y j ≤ max
i∶� i⊆q j∪i∶� i⊃q j

(zi min �,
�D(� i)��D(q j)� ) (�)

where � ≤ y j ≤ � and zi ∈ {�, �} are variables.
Here, zi is a binary variable determiningwhether a sample

family should be built or not, i.e., when zi = �, we build a
sample family on � i ; otherwise, when zi = �, we do not.

�e goal function (�) aims to maximize the weighted sum
of the coverage of the QCSs of the queries, q j . If we create a
strati�ed sample S(� i ,K), the coverage of this sample for q j
is de�ned as the probability that a given value x of columns q j
is also present among the rows of S(� i ,K). If � i ⊇ q j , then q j
is covered exactly, but � i ⊂ q j can also be useful by partially
covering q j . At runtime, if no strati�ed sample is available that
exactly covers a theQCS for a query, a partially-coveringQCS
may be used instead. In particular, the uniform sample is a
degenerate case with � i = �; it is useful for many queries but
less useful than more targeted strati�ed samples.

Since the coverage probability is hard to compute in prac-
tice, in this paper we approximate it by y j , which is deter-
mined by constraint (�).�e y j value is in [�, �], with �mean-
ing no coverage, and � meaning full coverage. �e intuition
behind (�) is that when we build a strati�ed sample on a
subset of columns � i ⊆ q j , i.e. when zi = �, we have par-
tially covered q j , too. We compute this coverage as the ra-
tio of the number of unique values between the two sets, i.e.,

=	
  



Experimental	
  Setup	
  

•  Conviva:	
  30-­‐day	
  log	
  of	
  media	
  accesses	
  by	
  
Conviva	
  users.	
  Raw	
  data	
  17	
  TB,	
  partitioned	
  
this	
  data	
  across	
  100	
  nodes	
  

•  Log	
  of	
  17,000	
  queries	
  (a	
  sample	
  of	
  200	
  
queries	
  had	
  17	
  templates).	
  	
  

•  50%	
  of	
  storage	
  budget:	
  8	
  Stratified	
  Samples	
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200-300x 
Faster! 
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BlinkDB	
  is	
  Open	
  Sourced!	
  
hqp://blinkdb.org	
  

Deployed	
  and	
  used	
  by	
  

Integrated	
  into	
  Presto	
  



Conclusion	
  
•  ApproximaIon	
  is	
  an	
  important	
  means	
  to	
  
achieve	
  interacIvity	
  in	
  the	
  big	
  data	
  age	
  

•  Ad-­‐hoc	
  exploratory	
  queries	
  on	
  an	
  
opImal	
  set	
  of	
  mulI-­‐dimensional	
  
straIfied	
  samples	
  converges	
  to	
  lower	
  
errors	
  2-­‐3	
  orders	
  of	
  magnitude	
  faster	
  
than	
  non-­‐opImal	
  strategies	
  



References	
  
•  Blink	
  and	
  It's	
  Done:	
  Interactive	
  Queries	
  on	
  Very	
  

Large	
  Data,	
  S.	
  Agarwal,	
  A.	
  Panda,	
  B.	
  Mozafari,	
  A.	
  
Iyer,	
  S.	
  Madden,	
  I.	
  Stoica,	
  VLDB	
  2012	
  demo	
  

•  BlinkDB:	
  Queries	
  with	
  Bounded	
  Errors	
  and	
  
Bounded	
  Response	
  Times	
  on	
  Very	
  Large	
  Data,	
  S.	
  
Agarwal,	
  B.	
  Mozafari,	
  A.	
  Panda,	
  H.	
  Milner,	
  S.	
  
Madden,	
  I.	
  Stoica,	
  EuroSys	
  2013	
  [Best	
  Paper	
  Award]	
  	
  

•  The	
  Analytical	
  Bootstrap:	
  A	
  New	
  Method	
  for	
  Fast	
  
Error	
  Estimation	
  in	
  Approximate	
  Query	
  
Processing,	
  K.	
  Zeng,	
  G.	
  Shi,	
  B.	
  Mozafari,	
  C.	
  Zaniolo,	
  
under	
  submission	
  



Backup	
  Slides	
  


