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My	  Research	  …	  
Using	  statistics	  to	  build	  better	  data-‐
intensive	  systems	  

1.   More	  predictable	  
Ø How	  to	  predict	  resources	  in	  a	  DB?	  
Ø How	  to	  design	  a	  more	  predictable	  DB?	  

2.   More	  scalable	  
Ø How	  to	  scale	  crowdsourcing?	  
Ø How	  to	  query	  petabytes	  of	  data	  in	  seconds?	  



Online	  Media	  Websites	  
Real-‐Ime	  Ad-‐performance,	  Spam	  DetecIon	  

Big	  Data	  



Log	  Processing	  	  
Root-‐cause	  Analysis,	  A/B	  TesIng	  

Big	  Data	  



Overview	  
Problem:	  	  Need	  to	  compute	  aggregate	  staIsIcs	  
over	  massive	  sets	  of	  data	  

	  

Our	  Goal:	  Support	  interacIve	  ad-‐hoc	  analyIcal	  
queries	  over	  these	  large	  datasets	  



Hard	  Disks	  

1-‐2	  Hours	   25-‐30	  Minutes	   1	  second	  

?	  
Memory	  

100	  TB	  on	  1000	  machines	  



Target	  Workload	  
1.   Real-‐Eme	  latency	  is	  valued	  over	  perfect	  

accuracy	  

“On a good day, I can run up to 6 
queries in Hive.” 
- Anonymous Data Scientist at 



Target	  Workload	  
1.   Real-‐Eme	  latency	  is	  valued	  over	  perfect	  

accuracy:	  ≤	  10	  sec	  for	  interacEve	  experience	  

	  

“On a good day, I can run up to 6 
queries in Hive.” 
- Anonymous Data Scientist at 



Target	  Workload	  
1.   Real-‐Eme	  latency	  is	  valued	  over	  perfect	  

accuracy:	  ≤	  10	  sec	  for	  interacEve	  experience	  

2.  ExploraIon	  is	  ad-‐hoc	  

3.  Columns	  queried	  together	  (i.e.,	  Templates)	  are	  
stable	  over	  Ime	  

	  



1.   Real-‐Eme	  latency	  is	  valued	  over	  perfect	  
accuracy:	  ≤	  10	  sec	  for	  interacEve	  experience	  

2.  ExploraIon	  is	  ad-‐hoc	  

3.  Columns	  queried	  together	  (i.e.,	  Templates)	  are	  
stable	  over	  Ime	  

	  





















     






















68,785	  Queries	  ≈	  211	  Templates	  

90%	  Queries	  ≈	  20%	  Templates	  

Target	  Workload	  



Target	  Workload	  
1.   Real-‐Eme	  latency	  is	  valued	  over	  perfect	  

accuracy:	  ≤	  10	  sec	  for	  interacEve	  experience	  

2.  ExploraIon	  is	  ad-‐hoc	  

3.  Columns	  queried	  together	  (i.e.,	  Templates)	  are	  
stable	  over	  Ime	  

	  





















     






















17,437	  Queries	  ≈	  108	  Templates	  

90%	  Queries	  ≈	  10%	  Templates	  



Target	  Workload	  
1.   Real-‐Eme	  latency	  is	  valued	  over	  perfect	  

accuracy:	  ≤	  10	  sec	  for	  interacEve	  experience	  

2.  ExploraIon	  is	  ad-‐hoc	  

3.  Columns	  queried	  together	  (i.e.,	  Templates)	  are	  
stable	  over	  Ime	  

4.  User	  defined	  funcIons	  (UDF)	  must	  be	  
supported:	  43.6%	  of	  Conviva’s	  queries	  	  

5.  Data	  is	  high-‐dimensional	  &	  skewed:	  +100	  
columns	  



Hard	  Disks	  

1-‐2	  Hours	   25-‐30	  Minutes	   1	  second	  

?	  
Memory	  

100	  TB	  on	  1000	  machines	  

One	  can	  ocen	  make	  perfect	  decision	  without	  
perfect	  answers	  	  

ApproximaIon	  Sampling-‐based	  ApproximaIon	  ApproximaIon	  using	  Offline	  Samples	  



SELECT	  avg(sessionTime)	  	  
FROM	  Table	  	  
WHERE	  city=‘San	  Francisco’	  
WITHIN	  1	  SECONDS	   234.23	  ±	  15.32	  

BlinkDB	  Interface	  



SELECT	  avg(sessionTime)	  	  
FROM	  Table	  	  
WHERE	  city=‘San	  Francisco’	  
WITHIN	  2	  	  SECONDS	   239.46	  ±	  4.96	  

SELECT	  avg(sessionTime)	  	  
FROM	  Table	  	  
WHERE	  city=‘San	  Francisco’	  
ERROR	  0.1	  CONFIDENCE	  95.0%	  

234.23	  ±	  15.32	  

BlinkDB	  Interface	  



BlinkDB	  Architecture	  

… 

… 

… 

… 

… 

… 

Offline	  sampling:	  
» Uniform	  
» Stratified	  on	  
different	  sets	  of	  
columns	  
» Different	  sizes	  

TABLE	  

Original	  	  
Data	  

In-‐Memory	  
Samples	  

On-‐Disk	  
Samples	  
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BlinkDB	  Architecture	  
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…	  

…	  

…	  

…	  

Predict	  time	  
and	  error	  of	  the	  
query	  for	  each	  
sample	  type	  

TABLE	  

Original	  	  
Data	  

In-‐Memory	  
Samples	  

On-‐Disk	  
Samples	  

	  
SELECT	  	  foo	  (*)	  
FROM	  TABLE	  
IN	  TIME	  2	  SECONDS	  

Query	  Plan	  

Sample	  Selection	  



BlinkDB	  Architecture	  
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In-‐Memory	  
Samples	  

On-‐Disk	  
Samples	  

Error	  Bars	  &	  
Confidence	  Intervals	  

Result	  
182.23	  ±	  5.56	  

(95%	  confidence)	  

Parallel	  
execution	  

TABLE	  

Original	  	  
Data	  

New	  Query	  Plan	  

Sample	  Selection	  

	  
SELECT	  	  foo	  (*)	  
FROM	  TABLE	  
IN	  TIME	  2	  SECONDS	  

Hive	  
Hadoop	   Spark	   Presto	  



1.  How	  to	  accurately	  estimate	  the	  error?	  
-  What	  about	  UDFs?	  (43.6%	  of	  Conviva	  queries)	  
-  What	  if	  the	  error	  estimate	  itself	  is	  wrong?	  

2.  Given	  a	  storage	  budget,	  which	  samples	  to	  
build	  &	  maintain	  to	  support	  a	  wide	  range	  of	  
ad-‐hoc	  exploratory	  queries?	  

3.  Given	  a	  query,	  what	  should	  be	  the	  optimal	  
sample	  type	  and	  size	  that	  can	  be	  processed	  
to	  meet	  its	  constraints?	  

Three	  Key	  Sets	  of	  Challenges	  



Closed-‐Form	  Error	  Estimates	  

Closed form approximations to variance of sample

estimators for BlinkDB

Henry Milner

04/06/13

Notation:

1. µ = E[X]

2. µk is the kth central moment of the underlying distribution, E[(X�E[X])

k
]

(note that µ1 = 0, not µ)

3. �2
= µ2

2 is the variance of the underlying distribution

4. p is the frequency of rows (the probability that a row matches the filter

predicate for the query)

The following results are (asymptotically in sample size) true, but not di-

rectly useful, since they depend on unknown properties of the underlying dis-

tribution. In all cases we just plug in the sample values. For example, instead

of µ we use

1
n

Pn
i=1 Xi where Xi is the ith sample value.

Note that for estimators other than sum and count, I assume no filtering

(p = 1). Filtering will increase variance a bit, or potentially a lot for extremely

selective queries (p = 0). I can compute the filtering-adjusted values if you like.

1. Count: N(np, n(1� p)p)

2. Sum: N(npµ, np(�2
+ (1� p)µ2

))

3. Mean: N(µ,�2/n)

4. Variance: N(�2, (µ4 � �4
)/n)

5. Stddev: N(�, (µ4 � �4
)/(4�2n))

1

What about more complex queries? 
Ø  UDFs, nested queries, joins, ... 

Central Limit Theorem (CLT) 



Bootstrap	  [Efron	  1979]	  
Quantify	  accuracy	  of	  a	  sample	  estimator	  	  f() 

f (X)  

S 

random	  
sample	  

Distribution	  X 

|S| = N f (S) 

can’t	  compute	  f (X)  
as	  we	  don’t	  have	  X 

what	  is	  f(S)’s	  error? 

S1 

Sk 

…
	  

f (S1) 

f (Sk) 

…
	  

|Si| = N 

sampling	  
with	  	  

replacement	  

• estimator:	  mean(f(Si)) 
• error,	  e.g.:	  stdev(f(Si)) 



Quantify	  accuracy	  of	  a	  query	  on	  a	  sample	  table 

Q(T)  Q(T) takes	  too	  long! 

Q(S) what	  is	  Q(S)’s	  error? 

sample	  

|S| = N S 

T Original	  	  
Table	  

Q (S1) 

Q (Sk) 

…
	  

|Si| = N 

sampling	  
with	  	  

replacement	  

S1 

Sk 

…
	  

Bootstrap	  

• estimator:	  mean(f(Si)) 
• error,	  e.g.:	  stdev(f(Si)) 



Q (S1) 

Q (Sk) 

…
	  S1 

Sk 

…
	  

Bootstrap	  
1.  Bootstrap	  treats	  Q	  as	  a	  black-‐box	  	  
Ø  Can	  handle	  (almost)	  arbitrarily	  complex	  queries	  

including	  UDFs!	  

2.   Embarrassingly	  Parallel	  

Uses	  too	  
many	  
resources	  in	  
the	  cluster	  



Error	  EsEmaEon	  
1.	  CLT-‐based	  closed	  forms:	  
Ø  Fast	  but	  limited	  to	  simple	  aggregates	  

2.	  Bootstrap	  (Monte	  Carlo	  simulation):	  

Ø  Expensive	  but	  general	  

3.	  Analytical	  Bootstrap	  Method	  (ABM):	  

Ø  Fast	  and	  general	  	  
ü  (some	  restrictions,	  e.g.	  no	  UDF,	  some	  self	  joins,	  ...)	  



AnalyEcal	  Bootstrap	  Method*	  
Key	  Idea:	  

1.  Annotate	  tuples	  w/	  integer	  random	  variables	  
Ø  Probabilistic	  Multiset	  Database	  

2.  Extend	  relational	  operators	  to	  manipulate	  
these	  random	  variables	  	  

3.  Use	  a	  single	  execution	  to	  estimate	  the	  
empirical	  distribution	  	  

	  

sum	   sum	  

div	  

filter1	   filter2	  

y,	  ε2	  x,	  ε1	  

S 

Every	  error	  propagation	  step	  may	  
introduce	  additional	  error	  	  	  

r	  =	  x/y,	  ε	  =	  epr(ε1,	  ε2)	  
* The Analytical Bootstrap: A New Method for Fast Error Estimation in Approximate 
Query Processing, K. Zeng, G. Shi, B. Mozafari, C. Zaniolo, under submission 



TPC-‐H	  Experiment	  

10^-1
10^0
10^1
10^2
10^3
10^4
10^5
10^6

Q1 Q3 Q5 Q6 Q7 Q8 Q9 Q10
Q11

Q12
Q14

Q16
Q17

Q18
Q19

Q20
Q22

Ex
ec

ut
io

n 
Ti

m
e(

S)

Bootstrap
BLB-10

ODM
ABM

10^-1
10^0
10^1
10^2
10^3
10^4
10^5
10^6

Q1 Q3 Q5 Q6 Q7 Q8 Q9 Q10
Q11

Q12
Q14

Q16
Q17

Q18
Q19

Q20
Q22

Ex
ec

ut
io

n 
Ti

m
e(

S)

Bootstrap
BLB-10

ODM
ABM

ABM is 2-4 orders of magnitude faster than 
simulation-based implementations of bootstrap 



1.  How	  to	  accurately	  estimate	  the	  error?	  
-  What	  about	  UDFs?	  (43.6%	  of	  Conviva	  queries)	  
-  What	  if	  the	  error	  estimate	  itself	  is	  wrong?	  

2.  Given	  a	  storage	  budget,	  which	  samples	  to	  
build	  &	  maintain	  to	  support	  a	  wide	  range	  of	  
ad-‐hoc	  exploratory	  queries?	  

3.  Given	  a	  query,	  what	  should	  be	  the	  optimal	  
sample	  type	  and	  size	  that	  can	  be	  processed	  
to	  meet	  its	  constraints?	  

Three	  Key	  Sets	  of	  Challenges	  



Problem	  with	  Uniform	  
Samples	  

SELECT	  avg(salary)	  
FROM	  table	  
WHERE	  city	  =	  ‘Ann	  Arbor’	  

ID	   City	   Age	   Salary	  

1	   NYC	   22	   50,000	  

2	   Ann	  Arbor	   25	   120,242	  

3	   NYC	   25	   78,212	  

4	   NYC	   67	   62,492	  

5	   NYC	   34	   98,341	  

6	   Ann	  Arbor	   62	   78,453	  

Uniform	  Sample	  
ID	   City	   Age	   Salary	   Sampling	  

Rate	  

3	   NYC	   25	   78,212	   1/3	  

5	   NYC	   34	   98,341	   1/3	  



ID	   City	   Age	   Salary	   Sampling	  
Rate	  

3	   NYC	   25	   78,212	   1/3	  

5	   NYC	   34	   98,341	   1/3	  

Problem	  with	  Uniform	  
Samples	  

Larger	  
ID	   City	   Age	   Salary	   Sampling	  

Rate	  

3	   NYC	   25	   78,212	   2/3	  

5	   NYC	   34	   98,341	   2/3	  

1	   NYC	   22	   50,000	   2/3	  

2	   Ann	  Arbor	   25	   120,242	   2/3	  

ID	   City	   Age	   Salary	  

1	   NYC	   22	   50,000	  

2	   Ann	  Arbor	   25	   120,242	  

3	   NYC	   25	   78,212	  

4	   NYC	   67	   62,492	  

5	   NYC	   34	   98,341	  

6	   Ann	  Arbor	   62	   78,453	   SELECT	  avg(salary)	  
FROM	  table	  
WHERE	  city	  =	  ‘Ann	  Arbor’	  

Uniform	  Sample	  



Stratified	  Samples	  

AND	  age	  >	  60	  

Stratified Sample on City 

ID	   City	   Age	   Salary	   Sampling	  
Rate	  

3	   NYC	   67	   62,492	   1/4	  

5	   Ann	  Arbor	   25	   120,242	   1/2	  

ID	   City	   Age	   Salary	  

1	   NYC	   22	   50,000	  

2	   Ann	  Arbor	   25	   120,242	  

3	   NYC	   25	   78,212	  

4	   NYC	   67	   62,492	  

5	   NYC	   34	   98,341	  

6	   Ann	  Arbor	   62	   78,453	   SELECT	  avg(salary)	  
FROM	  table	  
WHERE	  city	  =	  ‘Ann	  Arbor’	  



Target	  Workload	  
1.   Real-‐Eme	  latency	  is	  valued	  over	  perfect	  

accuracy:	  ≤	  10	  sec	  for	  interacEve	  experience	  

2.  ExploraIon	  is	  ad-‐hoc	  

3.  Columns	  queried	  together	  (i.e.,	  Templates)	  are	  
stable	  over	  Ime	  

4.  User	  defined	  funcIons	  (UDF)	  must	  be	  
supported:	  43.6%	  of	  Conviva’s	  queries	  	  

5.  Data	  is	  high-‐dimensional	  &	  skewed:	  +100	  
columns	  



Which	  Stratified	  Samples	  to	  Build?	  

For	  n	  columns,	  2n	  possible	  stratified	  samples	  

Modern	  data	  warehouses:	  	  n	  ≈	  100-‐200	  

Our	  solution:	  Choosing	  the	  best	  set	  of	  
samples	  by	  considering	  

1.  Columns	  queried	  together	  

2. Data	  distribution	  
3.  Storage	  costs	  
	  

	  



OpEmal	  Set	  of	  Samples	  
[City]	  

ID	   City	   Age	   Salary	  

1	   NYC	   25	   50,000	  

2	   NYC	   35	   62,492	  

3	   Ann	  Arbor	   35	   78,212	  

4	   NYC	   25	   120,242	  

5	   NYC	   35	   98,341	  

6	   Berkeley	   25	   75,453	  

7	   NYC	   25	   60,000	  

8	   NYC	   35	   72,492	  

9	   Berkeley	   45	   88,212	  

10	   Berkeley	   35	   92,242	  

11	   NYC	   35	   70,000	  

12	   Ann	  Arbor	   45	   102,492	  

[Age]	  

[Salary]	  

[City,	  Age]	  

[Age,	  Salary]	  

[City,	  Salary]	  

[City,	  Age,	  Salary]	  



[City]	  

[Age]	  

[Salary]	  

[City,	  Age]	  

[Age,	  Salary]	  

[City,	  Salary]	  

[City,	  Age,	  Salary]	  

SELECT	  AVG	  (…)	  
FROM	  Table	  
WHERE	  Age	  =	  x	  

Query	  Coverage	  



Query	  Coverage	  
[City]	  

[Age]	  

[Salary]	  

[City,	  Age]	  

[Age,	  Salary]	  

[City,	  Salary]	  

[City,	  Age,	  Salary]	  

SELECT	  AVG	  (…)	  
FROM	  Table	  
WHERE	  Age	  =	  x	  

0%	  

100%	  

0%	  

100%	  

100%	  

0%	  

100%	  



Query	  Coverage	  
[City]	  

[Age]	  

[Salary]	  

[City,	  Age]	  

[Age,	  Salary]	  

[City,	  Salary]	  

[City,	  Age,	  Salary]	  

SELECT	  AVG	  (…)	  
FROM	  Table	  
WHERE	  Age	  =	  x	  	  AND	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  City	  =	  z	  	  



Query	  Coverage	  
[City]	  

[Age]	  

[Salary]	  

[City,	  Age]	  

[Age,	  Salary]	  

[City,	  Salary]	  

[City,	  Age,	  Salary]	  

SELECT	  AVG	  (…)	  
FROM	  Table	  
WHERE	  Age	  =	  x	  	  AND	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  City	  =	  z	  	  

100%	  

100%	  



Query	  Coverage	  
[City]	  

[Age]	  

[Salary]	  

[City,	  Age]	  

[Age,	  Salary]	  

[City,	  Salary]	  

[City,	  Age,	  Salary]	  

SELECT	  AVG	  (…)	  
FROM	  Table	  
WHERE	  Age	  =	  x	  	  AND	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  City	  =	  z	  	  
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Query	  Coverage	  
[City]	  

[Age]	  

[Salary]	  

[City,	  Age]	  

[Age,	  Salary]	  

[City,	  Salary]	  

[City,	  Age,	  Salary]	  

SELECT	  AVG	  (…)	  
FROM	  Table	  
WHERE	  Age	  =	  x	  	  AND	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  City	  =	  z	  	  
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Figure �. (a) Possible storage layout for strati�ed sample S(�,K).

dimensional strati�ed samples. As described above, each
strati�ed sample can potentially be used at runtime to im-
prove query accuracy and latency, especially when the orig-
inal table contains small groups for a particular column set.
However, each stored sample has a storage cost equal to its
size, and the number of potential samples is exponential in
the number of columns. As a result, we need to be careful
in choosing the set of column-sets on which to build strati-
�ed samples.We formulate the trade-o� between storage cost
and query accuracy/performance as an optimization prob-
lem, described next.

�.�.� Problem Formulation
�e optimization problem takes three factors into account in
determining the sets of columns on which strati�ed samples
should be built: the “sparsity” of the data,workload character-
istics, and the storage cost of samples.

Sparsity of the data. A strati�ed sample on � is useful when
the original table T contains many small groups under �.
Consider aQCS � in table T . Recall thatD(�) denotes the set
of all distinct values on columns � in rows of T . We de�ne a
“sparsity” function ∆(�,M) as the number of groups whose
size in T is less than some number M�:

∆(�,M) = �{x ∈ D(�) ∶ �Tx � < M}�
Workload.A strati�ed sample is only useful when it is bene-
�cial to actual queries. Under our model for queries, a query
has a QCS q j with some (unknown) probability p j - that is,
QCSs are drawn from aMultinomial (p� , p� , ...) distribution.
�e best estimate of p j is simply the frequency of queries with
QCS q j in past queries.

Storage cost. Storage is the main constraint against build-
ing too many strati�ed samples, and against building strat-
i�ed samples on large column sets that produce too many
groups. �erefore, we must compute the storage cost of po-
tential samples and constrain total storage. To simplify the
formulation, we assume a single value of K for all samples;
a sample family � either receives no samples or a full sam-
ple with K elements of Tx for each x ∈ D(�). �S(�,K)� is the
storage cost (in rows) of building a strati�ed sample on a set
of columns �.
�Appropriate values for M will be discussed later in this section. Alterna-
tively, one could plug in di�erent notions of sparsity of a distribution in our
formulation.

Given these three factors de�ned above, we now introduce
our optimization formulation. Let the overall storage capacity
budget (again in rows) be C. Our goal is to select β column
sets from among m possible QCSs, say � i� ,�, � iβ , which can
best answer our queries, while satisfying:

β�
k=�
�S(� ik ,K)� ≤ C

Speci�cally, inBlinkDB, wemaximize the followingmixed
integer linear program (MILP) in which j indexes over all
queries and i indexes over all possible column sets:

G =�
j
p j ⋅ y j ⋅ ∆(q j ,M) (�)

subject to
m�
i=� �S(� i ,K)� ⋅ zi ≤ C (�)

and

∀ j ∶ y j ≤ max
i∶� i⊆q j∪i∶� i⊃q j

(zi min �,
�D(� i)��D(q j)� ) (�)

where � ≤ y j ≤ � and zi ∈ {�, �} are variables.
Here, zi is a binary variable determiningwhether a sample

family should be built or not, i.e., when zi = �, we build a
sample family on � i ; otherwise, when zi = �, we do not.

�e goal function (�) aims to maximize the weighted sum
of the coverage of the QCSs of the queries, q j . If we create a
strati�ed sample S(� i ,K), the coverage of this sample for q j
is de�ned as the probability that a given value x of columns q j
is also present among the rows of S(� i ,K). If � i ⊇ q j , then q j
is covered exactly, but � i ⊂ q j can also be useful by partially
covering q j . At runtime, if no strati�ed sample is available that
exactly covers a theQCS for a query, a partially-coveringQCS
may be used instead. In particular, the uniform sample is a
degenerate case with � i = �; it is useful for many queries but
less useful than more targeted strati�ed samples.

Since the coverage probability is hard to compute in prac-
tice, in this paper we approximate it by y j , which is deter-
mined by constraint (�).�e y j value is in [�, �], with �mean-
ing no coverage, and � meaning full coverage. �e intuition
behind (�) is that when we build a strati�ed sample on a
subset of columns � i ⊆ q j , i.e. when zi = �, we have par-
tially covered q j , too. We compute this coverage as the ra-
tio of the number of unique values between the two sets, i.e.,



Cost	  of	  StraEficaEon	  
ID	   City	   Age	   Salary	  

1	   NYC	   25	   50,000	  

2	   NYC	   25	   80,000	  

3	   Ann	  Arbor	   35	   80,000	  

4	   NYC	   25	   120,000	  

5	   NYC	   25	   80,000	  

6	   Berkeley	   25	   80,000	  

7	   NYC	   25	   60,000	  

8	   NYC	   25	   70,000	  

9	   Berkeley	   30	   80,000	  

10	   Berkeley	   25	   90,000	  

11	   NYC	   40	   80,000	  

12	   Ann	  Arbor	   45	   100,000	  

ID	   City	   Age	   Salary	   Ratio	  

1	   NYC	   25	   50,000	   2/7	  

8	   NYC	   35	   70,000	   2/7	  

6	   Berkeley	   25	   80,000	   2/3	  

10	   Berkeley	   25	   90,000	   2/3	  

3	   Ann	  Arbor	   35	   80,000	   1	  

12	   Ann	  Arbor	   45	   100,000	   1	  

Stratified	  Sample	  on	  
[City]	  

Cost	  =	  6	  



ID	   City	   Age	   Salary	  

1	   NYC	   25	   50,000	  

2	   NYC	   25	   80,000	  

3	   Ann	  Arbor	   35	   80,000	  

4	   NYC	   25	   120,000	  

5	   NYC	   25	   80,000	  

6	   Berkeley	   25	   80,000	  

7	   NYC	   25	   60,000	  

8	   NYC	   25	   70,000	  

9	   Berkeley	   30	   80,000	  

10	   Berkeley	   25	   90,000	  

11	   NYC	   40	   80,000	  

12	   Ann	  Arbor	   45	   100,000	  

Cost	  of	  StraEficaEon	  

ID	   City	   Age	   Salary	   Ratio	  

1	   NYC	   25	   50,000	   1	  

7	   NYC	   25	   60,000	   1	  

8	   NYC	   25	   70,000	   1	  

3	   Ann	  Arbor	   35	   80,000	   1/3	  

9	   Berkeley	   30	   80,000	   1/3	  

10	   Berkeley	   25	   90,000	   1	  

12	   Ann	  Arbor	   45	   100,000	   1	  

4	   NYC	   25	   120,000	   1	  

Stratified	  Sample	  on	  
[Salary]	  

Cost	  =	  8	  
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Figure �. (a) Possible storage layout for strati�ed sample S(�,K).

dimensional strati�ed samples. As described above, each
strati�ed sample can potentially be used at runtime to im-
prove query accuracy and latency, especially when the orig-
inal table contains small groups for a particular column set.
However, each stored sample has a storage cost equal to its
size, and the number of potential samples is exponential in
the number of columns. As a result, we need to be careful
in choosing the set of column-sets on which to build strati-
�ed samples.We formulate the trade-o� between storage cost
and query accuracy/performance as an optimization prob-
lem, described next.

�.�.� Problem Formulation
�e optimization problem takes three factors into account in
determining the sets of columns on which strati�ed samples
should be built: the “sparsity” of the data,workload character-
istics, and the storage cost of samples.

Sparsity of the data. A strati�ed sample on � is useful when
the original table T contains many small groups under �.
Consider aQCS � in table T . Recall thatD(�) denotes the set
of all distinct values on columns � in rows of T . We de�ne a
“sparsity” function ∆(�,M) as the number of groups whose
size in T is less than some number M�:

∆(�,M) = �{x ∈ D(�) ∶ �Tx � < M}�
Workload.A strati�ed sample is only useful when it is bene-
�cial to actual queries. Under our model for queries, a query
has a QCS q j with some (unknown) probability p j - that is,
QCSs are drawn from aMultinomial (p� , p� , ...) distribution.
�e best estimate of p j is simply the frequency of queries with
QCS q j in past queries.

Storage cost. Storage is the main constraint against build-
ing too many strati�ed samples, and against building strat-
i�ed samples on large column sets that produce too many
groups. �erefore, we must compute the storage cost of po-
tential samples and constrain total storage. To simplify the
formulation, we assume a single value of K for all samples;
a sample family � either receives no samples or a full sam-
ple with K elements of Tx for each x ∈ D(�). �S(�,K)� is the
storage cost (in rows) of building a strati�ed sample on a set
of columns �.
�Appropriate values for M will be discussed later in this section. Alterna-
tively, one could plug in di�erent notions of sparsity of a distribution in our
formulation.

Given these three factors de�ned above, we now introduce
our optimization formulation. Let the overall storage capacity
budget (again in rows) be C. Our goal is to select β column
sets from among m possible QCSs, say � i� ,�, � iβ , which can
best answer our queries, while satisfying:

β�
k=�
�S(� ik ,K)� ≤ C

Speci�cally, inBlinkDB, wemaximize the followingmixed
integer linear program (MILP) in which j indexes over all
queries and i indexes over all possible column sets:

G =�
j
p j ⋅ y j ⋅ ∆(q j ,M) (�)

subject to
m�
i=� �S(� i ,K)� ⋅ zi ≤ C (�)

and

∀ j ∶ y j ≤ max
i∶� i⊆q j∪i∶� i⊃q j

(zi min �,
�D(� i)��D(q j)� ) (�)

where � ≤ y j ≤ � and zi ∈ {�, �} are variables.
Here, zi is a binary variable determiningwhether a sample

family should be built or not, i.e., when zi = �, we build a
sample family on � i ; otherwise, when zi = �, we do not.

�e goal function (�) aims to maximize the weighted sum
of the coverage of the QCSs of the queries, q j . If we create a
strati�ed sample S(� i ,K), the coverage of this sample for q j
is de�ned as the probability that a given value x of columns q j
is also present among the rows of S(� i ,K). If � i ⊇ q j , then q j
is covered exactly, but � i ⊂ q j can also be useful by partially
covering q j . At runtime, if no strati�ed sample is available that
exactly covers a theQCS for a query, a partially-coveringQCS
may be used instead. In particular, the uniform sample is a
degenerate case with � i = �; it is useful for many queries but
less useful than more targeted strati�ed samples.

Since the coverage probability is hard to compute in prac-
tice, in this paper we approximate it by y j , which is deter-
mined by constraint (�).�e y j value is in [�, �], with �mean-
ing no coverage, and � meaning full coverage. �e intuition
behind (�) is that when we build a strati�ed sample on a
subset of columns � i ⊆ q j , i.e. when zi = �, we have par-
tially covered q j , too. We compute this coverage as the ra-
tio of the number of unique values between the two sets, i.e.,

MILP	  Formulation	  
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Figure �. (a) Possible storage layout for strati�ed sample S(�,K).

dimensional strati�ed samples. As described above, each
strati�ed sample can potentially be used at runtime to im-
prove query accuracy and latency, especially when the orig-
inal table contains small groups for a particular column set.
However, each stored sample has a storage cost equal to its
size, and the number of potential samples is exponential in
the number of columns. As a result, we need to be careful
in choosing the set of column-sets on which to build strati-
�ed samples.We formulate the trade-o� between storage cost
and query accuracy/performance as an optimization prob-
lem, described next.

�.�.� Problem Formulation
�e optimization problem takes three factors into account in
determining the sets of columns on which strati�ed samples
should be built: the “sparsity” of the data,workload character-
istics, and the storage cost of samples.

Sparsity of the data. A strati�ed sample on � is useful when
the original table T contains many small groups under �.
Consider aQCS � in table T . Recall thatD(�) denotes the set
of all distinct values on columns � in rows of T . We de�ne a
“sparsity” function ∆(�,M) as the number of groups whose
size in T is less than some number M�:

∆(�,M) = �{x ∈ D(�) ∶ �Tx � < M}�
Workload.A strati�ed sample is only useful when it is bene-
�cial to actual queries. Under our model for queries, a query
has a QCS q j with some (unknown) probability p j - that is,
QCSs are drawn from aMultinomial (p� , p� , ...) distribution.
�e best estimate of p j is simply the frequency of queries with
QCS q j in past queries.

Storage cost. Storage is the main constraint against build-
ing too many strati�ed samples, and against building strat-
i�ed samples on large column sets that produce too many
groups. �erefore, we must compute the storage cost of po-
tential samples and constrain total storage. To simplify the
formulation, we assume a single value of K for all samples;
a sample family � either receives no samples or a full sam-
ple with K elements of Tx for each x ∈ D(�). �S(�,K)� is the
storage cost (in rows) of building a strati�ed sample on a set
of columns �.
�Appropriate values for M will be discussed later in this section. Alterna-
tively, one could plug in di�erent notions of sparsity of a distribution in our
formulation.

Given these three factors de�ned above, we now introduce
our optimization formulation. Let the overall storage capacity
budget (again in rows) be C. Our goal is to select β column
sets from among m possible QCSs, say � i� ,�, � iβ , which can
best answer our queries, while satisfying:

β�
k=�
�S(� ik ,K)� ≤ C

Speci�cally, inBlinkDB, wemaximize the followingmixed
integer linear program (MILP) in which j indexes over all
queries and i indexes over all possible column sets:

G =�
j
p j ⋅ y j ⋅ ∆(q j ,M) (�)

subject to
m�
i=� �S(� i ,K)� ⋅ zi ≤ C (�)

and

∀ j ∶ y j ≤ max
i∶� i⊆q j∪i∶� i⊃q j

(zi min �,
�D(� i)��D(q j)� ) (�)

where � ≤ y j ≤ � and zi ∈ {�, �} are variables.
Here, zi is a binary variable determiningwhether a sample

family should be built or not, i.e., when zi = �, we build a
sample family on � i ; otherwise, when zi = �, we do not.

�e goal function (�) aims to maximize the weighted sum
of the coverage of the QCSs of the queries, q j . If we create a
strati�ed sample S(� i ,K), the coverage of this sample for q j
is de�ned as the probability that a given value x of columns q j
is also present among the rows of S(� i ,K). If � i ⊇ q j , then q j
is covered exactly, but � i ⊂ q j can also be useful by partially
covering q j . At runtime, if no strati�ed sample is available that
exactly covers a theQCS for a query, a partially-coveringQCS
may be used instead. In particular, the uniform sample is a
degenerate case with � i = �; it is useful for many queries but
less useful than more targeted strati�ed samples.

Since the coverage probability is hard to compute in prac-
tice, in this paper we approximate it by y j , which is deter-
mined by constraint (�).�e y j value is in [�, �], with �mean-
ing no coverage, and � meaning full coverage. �e intuition
behind (�) is that when we build a strati�ed sample on a
subset of columns � i ⊆ q j , i.e. when zi = �, we have par-
tially covered q j , too. We compute this coverage as the ra-
tio of the number of unique values between the two sets, i.e.,

MILP	  Formulation	  

Maximize	  

Cost	  of	  all	  
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Figure �. (a) Possible storage layout for strati�ed sample S(�,K).

dimensional strati�ed samples. As described above, each
strati�ed sample can potentially be used at runtime to im-
prove query accuracy and latency, especially when the orig-
inal table contains small groups for a particular column set.
However, each stored sample has a storage cost equal to its
size, and the number of potential samples is exponential in
the number of columns. As a result, we need to be careful
in choosing the set of column-sets on which to build strati-
�ed samples.We formulate the trade-o� between storage cost
and query accuracy/performance as an optimization prob-
lem, described next.

�.�.� Problem Formulation
�e optimization problem takes three factors into account in
determining the sets of columns on which strati�ed samples
should be built: the “sparsity” of the data,workload character-
istics, and the storage cost of samples.

Sparsity of the data. A strati�ed sample on � is useful when
the original table T contains many small groups under �.
Consider aQCS � in table T . Recall thatD(�) denotes the set
of all distinct values on columns � in rows of T . We de�ne a
“sparsity” function ∆(�,M) as the number of groups whose
size in T is less than some number M�:

∆(�,M) = �{x ∈ D(�) ∶ �Tx � < M}�
Workload.A strati�ed sample is only useful when it is bene-
�cial to actual queries. Under our model for queries, a query
has a QCS q j with some (unknown) probability p j - that is,
QCSs are drawn from aMultinomial (p� , p� , ...) distribution.
�e best estimate of p j is simply the frequency of queries with
QCS q j in past queries.

Storage cost. Storage is the main constraint against build-
ing too many strati�ed samples, and against building strat-
i�ed samples on large column sets that produce too many
groups. �erefore, we must compute the storage cost of po-
tential samples and constrain total storage. To simplify the
formulation, we assume a single value of K for all samples;
a sample family � either receives no samples or a full sam-
ple with K elements of Tx for each x ∈ D(�). �S(�,K)� is the
storage cost (in rows) of building a strati�ed sample on a set
of columns �.
�Appropriate values for M will be discussed later in this section. Alterna-
tively, one could plug in di�erent notions of sparsity of a distribution in our
formulation.

Given these three factors de�ned above, we now introduce
our optimization formulation. Let the overall storage capacity
budget (again in rows) be C. Our goal is to select β column
sets from among m possible QCSs, say � i� ,�, � iβ , which can
best answer our queries, while satisfying:

β�
k=�
�S(� ik ,K)� ≤ C

Speci�cally, inBlinkDB, wemaximize the followingmixed
integer linear program (MILP) in which j indexes over all
queries and i indexes over all possible column sets:

G =�
j
p j ⋅ y j ⋅ ∆(q j ,M) (�)

subject to
m�
i=� �S(� i ,K)� ⋅ zi ≤ C (�)

and

∀ j ∶ y j ≤ max
i∶� i⊆q j∪i∶� i⊃q j

(zi min �,
�D(� i)��D(q j)� ) (�)

where � ≤ y j ≤ � and zi ∈ {�, �} are variables.
Here, zi is a binary variable determiningwhether a sample

family should be built or not, i.e., when zi = �, we build a
sample family on � i ; otherwise, when zi = �, we do not.

�e goal function (�) aims to maximize the weighted sum
of the coverage of the QCSs of the queries, q j . If we create a
strati�ed sample S(� i ,K), the coverage of this sample for q j
is de�ned as the probability that a given value x of columns q j
is also present among the rows of S(� i ,K). If � i ⊇ q j , then q j
is covered exactly, but � i ⊂ q j can also be useful by partially
covering q j . At runtime, if no strati�ed sample is available that
exactly covers a theQCS for a query, a partially-coveringQCS
may be used instead. In particular, the uniform sample is a
degenerate case with � i = �; it is useful for many queries but
less useful than more targeted strati�ed samples.

Since the coverage probability is hard to compute in prac-
tice, in this paper we approximate it by y j , which is deter-
mined by constraint (�).�e y j value is in [�, �], with �mean-
ing no coverage, and � meaning full coverage. �e intuition
behind (�) is that when we build a strati�ed sample on a
subset of columns � i ⊆ q j , i.e. when zi = �, we have par-
tially covered q j , too. We compute this coverage as the ra-
tio of the number of unique values between the two sets, i.e.,
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Figure �. (a) Possible storage layout for strati�ed sample S(�,K).

dimensional strati�ed samples. As described above, each
strati�ed sample can potentially be used at runtime to im-
prove query accuracy and latency, especially when the orig-
inal table contains small groups for a particular column set.
However, each stored sample has a storage cost equal to its
size, and the number of potential samples is exponential in
the number of columns. As a result, we need to be careful
in choosing the set of column-sets on which to build strati-
�ed samples.We formulate the trade-o� between storage cost
and query accuracy/performance as an optimization prob-
lem, described next.

�.�.� Problem Formulation
�e optimization problem takes three factors into account in
determining the sets of columns on which strati�ed samples
should be built: the “sparsity” of the data,workload character-
istics, and the storage cost of samples.

Sparsity of the data. A strati�ed sample on � is useful when
the original table T contains many small groups under �.
Consider aQCS � in table T . Recall thatD(�) denotes the set
of all distinct values on columns � in rows of T . We de�ne a
“sparsity” function ∆(�,M) as the number of groups whose
size in T is less than some number M�:

∆(�,M) = �{x ∈ D(�) ∶ �Tx � < M}�
Workload.A strati�ed sample is only useful when it is bene-
�cial to actual queries. Under our model for queries, a query
has a QCS q j with some (unknown) probability p j - that is,
QCSs are drawn from aMultinomial (p� , p� , ...) distribution.
�e best estimate of p j is simply the frequency of queries with
QCS q j in past queries.

Storage cost. Storage is the main constraint against build-
ing too many strati�ed samples, and against building strat-
i�ed samples on large column sets that produce too many
groups. �erefore, we must compute the storage cost of po-
tential samples and constrain total storage. To simplify the
formulation, we assume a single value of K for all samples;
a sample family � either receives no samples or a full sam-
ple with K elements of Tx for each x ∈ D(�). �S(�,K)� is the
storage cost (in rows) of building a strati�ed sample on a set
of columns �.
�Appropriate values for M will be discussed later in this section. Alterna-
tively, one could plug in di�erent notions of sparsity of a distribution in our
formulation.

Given these three factors de�ned above, we now introduce
our optimization formulation. Let the overall storage capacity
budget (again in rows) be C. Our goal is to select β column
sets from among m possible QCSs, say � i� ,�, � iβ , which can
best answer our queries, while satisfying:

β�
k=�
�S(� ik ,K)� ≤ C

Speci�cally, inBlinkDB, wemaximize the followingmixed
integer linear program (MILP) in which j indexes over all
queries and i indexes over all possible column sets:

G =�
j
p j ⋅ y j ⋅ ∆(q j ,M) (�)

subject to
m�
i=� �S(� i ,K)� ⋅ zi ≤ C (�)

and

∀ j ∶ y j ≤ max
i∶� i⊆q j∪i∶� i⊃q j

(zi min �,
�D(� i)��D(q j)� ) (�)

where � ≤ y j ≤ � and zi ∈ {�, �} are variables.
Here, zi is a binary variable determiningwhether a sample

family should be built or not, i.e., when zi = �, we build a
sample family on � i ; otherwise, when zi = �, we do not.

�e goal function (�) aims to maximize the weighted sum
of the coverage of the QCSs of the queries, q j . If we create a
strati�ed sample S(� i ,K), the coverage of this sample for q j
is de�ned as the probability that a given value x of columns q j
is also present among the rows of S(� i ,K). If � i ⊇ q j , then q j
is covered exactly, but � i ⊂ q j can also be useful by partially
covering q j . At runtime, if no strati�ed sample is available that
exactly covers a theQCS for a query, a partially-coveringQCS
may be used instead. In particular, the uniform sample is a
degenerate case with � i = �; it is useful for many queries but
less useful than more targeted strati�ed samples.

Since the coverage probability is hard to compute in prac-
tice, in this paper we approximate it by y j , which is deter-
mined by constraint (�).�e y j value is in [�, �], with �mean-
ing no coverage, and � meaning full coverage. �e intuition
behind (�) is that when we build a strati�ed sample on a
subset of columns � i ⊆ q j , i.e. when zi = �, we have par-
tially covered q j , too. We compute this coverage as the ra-
tio of the number of unique values between the two sets, i.e.,

Cost	  of	  all	  
Samples	  

=	  



K 

B1 

B21 

B22 

B31 

B32 

B33 

B41 

B42 

B51 

B52 

B6 B7 B8 

B43 

x 

(a)

K 

B1 

B21 

B22 

B31 

B32 

B33 

B51 

B52 

B6 B7 B8 

B43 

K1 
B42 

B41 

x 

(b)
Figure �. (a) Possible storage layout for strati�ed sample S(�,K).

dimensional strati�ed samples. As described above, each
strati�ed sample can potentially be used at runtime to im-
prove query accuracy and latency, especially when the orig-
inal table contains small groups for a particular column set.
However, each stored sample has a storage cost equal to its
size, and the number of potential samples is exponential in
the number of columns. As a result, we need to be careful
in choosing the set of column-sets on which to build strati-
�ed samples.We formulate the trade-o� between storage cost
and query accuracy/performance as an optimization prob-
lem, described next.

�.�.� Problem Formulation
�e optimization problem takes three factors into account in
determining the sets of columns on which strati�ed samples
should be built: the “sparsity” of the data,workload character-
istics, and the storage cost of samples.

Sparsity of the data. A strati�ed sample on � is useful when
the original table T contains many small groups under �.
Consider aQCS � in table T . Recall thatD(�) denotes the set
of all distinct values on columns � in rows of T . We de�ne a
“sparsity” function ∆(�,M) as the number of groups whose
size in T is less than some number M�:

∆(�,M) = �{x ∈ D(�) ∶ �Tx � < M}�
Workload.A strati�ed sample is only useful when it is bene-
�cial to actual queries. Under our model for queries, a query
has a QCS q j with some (unknown) probability p j - that is,
QCSs are drawn from aMultinomial (p� , p� , ...) distribution.
�e best estimate of p j is simply the frequency of queries with
QCS q j in past queries.

Storage cost. Storage is the main constraint against build-
ing too many strati�ed samples, and against building strat-
i�ed samples on large column sets that produce too many
groups. �erefore, we must compute the storage cost of po-
tential samples and constrain total storage. To simplify the
formulation, we assume a single value of K for all samples;
a sample family � either receives no samples or a full sam-
ple with K elements of Tx for each x ∈ D(�). �S(�,K)� is the
storage cost (in rows) of building a strati�ed sample on a set
of columns �.
�Appropriate values for M will be discussed later in this section. Alterna-
tively, one could plug in di�erent notions of sparsity of a distribution in our
formulation.

Given these three factors de�ned above, we now introduce
our optimization formulation. Let the overall storage capacity
budget (again in rows) be C. Our goal is to select β column
sets from among m possible QCSs, say � i� ,�, � iβ , which can
best answer our queries, while satisfying:

β�
k=�
�S(� ik ,K)� ≤ C

Speci�cally, inBlinkDB, wemaximize the followingmixed
integer linear program (MILP) in which j indexes over all
queries and i indexes over all possible column sets:

G =�
j
p j ⋅ y j ⋅ ∆(q j ,M) (�)

subject to
m�
i=� �S(� i ,K)� ⋅ zi ≤ C (�)

and

∀ j ∶ y j ≤ max
i∶� i⊆q j∪i∶� i⊃q j

(zi min �,
�D(� i)��D(q j)� ) (�)

where � ≤ y j ≤ � and zi ∈ {�, �} are variables.
Here, zi is a binary variable determiningwhether a sample

family should be built or not, i.e., when zi = �, we build a
sample family on � i ; otherwise, when zi = �, we do not.

�e goal function (�) aims to maximize the weighted sum
of the coverage of the QCSs of the queries, q j . If we create a
strati�ed sample S(� i ,K), the coverage of this sample for q j
is de�ned as the probability that a given value x of columns q j
is also present among the rows of S(� i ,K). If � i ⊇ q j , then q j
is covered exactly, but � i ⊂ q j can also be useful by partially
covering q j . At runtime, if no strati�ed sample is available that
exactly covers a theQCS for a query, a partially-coveringQCS
may be used instead. In particular, the uniform sample is a
degenerate case with � i = �; it is useful for many queries but
less useful than more targeted strati�ed samples.

Since the coverage probability is hard to compute in prac-
tice, in this paper we approximate it by y j , which is deter-
mined by constraint (�).�e y j value is in [�, �], with �mean-
ing no coverage, and � meaning full coverage. �e intuition
behind (�) is that when we build a strati�ed sample on a
subset of columns � i ⊆ q j , i.e. when zi = �, we have par-
tially covered q j , too. We compute this coverage as the ra-
tio of the number of unique values between the two sets, i.e.,
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dimensional strati�ed samples. As described above, each
strati�ed sample can potentially be used at runtime to im-
prove query accuracy and latency, especially when the orig-
inal table contains small groups for a particular column set.
However, each stored sample has a storage cost equal to its
size, and the number of potential samples is exponential in
the number of columns. As a result, we need to be careful
in choosing the set of column-sets on which to build strati-
�ed samples.We formulate the trade-o� between storage cost
and query accuracy/performance as an optimization prob-
lem, described next.

�.�.� Problem Formulation
�e optimization problem takes three factors into account in
determining the sets of columns on which strati�ed samples
should be built: the “sparsity” of the data,workload character-
istics, and the storage cost of samples.

Sparsity of the data. A strati�ed sample on � is useful when
the original table T contains many small groups under �.
Consider aQCS � in table T . Recall thatD(�) denotes the set
of all distinct values on columns � in rows of T . We de�ne a
“sparsity” function ∆(�,M) as the number of groups whose
size in T is less than some number M�:

∆(�,M) = �{x ∈ D(�) ∶ �Tx � < M}�
Workload.A strati�ed sample is only useful when it is bene-
�cial to actual queries. Under our model for queries, a query
has a QCS q j with some (unknown) probability p j - that is,
QCSs are drawn from aMultinomial (p� , p� , ...) distribution.
�e best estimate of p j is simply the frequency of queries with
QCS q j in past queries.

Storage cost. Storage is the main constraint against build-
ing too many strati�ed samples, and against building strat-
i�ed samples on large column sets that produce too many
groups. �erefore, we must compute the storage cost of po-
tential samples and constrain total storage. To simplify the
formulation, we assume a single value of K for all samples;
a sample family � either receives no samples or a full sam-
ple with K elements of Tx for each x ∈ D(�). �S(�,K)� is the
storage cost (in rows) of building a strati�ed sample on a set
of columns �.
�Appropriate values for M will be discussed later in this section. Alterna-
tively, one could plug in di�erent notions of sparsity of a distribution in our
formulation.

Given these three factors de�ned above, we now introduce
our optimization formulation. Let the overall storage capacity
budget (again in rows) be C. Our goal is to select β column
sets from among m possible QCSs, say � i� ,�, � iβ , which can
best answer our queries, while satisfying:

β�
k=�
�S(� ik ,K)� ≤ C

Speci�cally, inBlinkDB, wemaximize the followingmixed
integer linear program (MILP) in which j indexes over all
queries and i indexes over all possible column sets:

G =�
j
p j ⋅ y j ⋅ ∆(q j ,M) (�)

subject to
m�
i=� �S(� i ,K)� ⋅ zi ≤ C (�)

and

∀ j ∶ y j ≤ max
i∶� i⊆q j∪i∶� i⊃q j

(zi min �,
�D(� i)��D(q j)� ) (�)

where � ≤ y j ≤ � and zi ∈ {�, �} are variables.
Here, zi is a binary variable determiningwhether a sample

family should be built or not, i.e., when zi = �, we build a
sample family on � i ; otherwise, when zi = �, we do not.

�e goal function (�) aims to maximize the weighted sum
of the coverage of the QCSs of the queries, q j . If we create a
strati�ed sample S(� i ,K), the coverage of this sample for q j
is de�ned as the probability that a given value x of columns q j
is also present among the rows of S(� i ,K). If � i ⊇ q j , then q j
is covered exactly, but � i ⊂ q j can also be useful by partially
covering q j . At runtime, if no strati�ed sample is available that
exactly covers a theQCS for a query, a partially-coveringQCS
may be used instead. In particular, the uniform sample is a
degenerate case with � i = �; it is useful for many queries but
less useful than more targeted strati�ed samples.

Since the coverage probability is hard to compute in prac-
tice, in this paper we approximate it by y j , which is deter-
mined by constraint (�).�e y j value is in [�, �], with �mean-
ing no coverage, and � meaning full coverage. �e intuition
behind (�) is that when we build a strati�ed sample on a
subset of columns � i ⊆ q j , i.e. when zi = �, we have par-
tially covered q j , too. We compute this coverage as the ra-
tio of the number of unique values between the two sets, i.e.,
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Figure �. (a) Possible storage layout for strati�ed sample S(�,K).

dimensional strati�ed samples. As described above, each
strati�ed sample can potentially be used at runtime to im-
prove query accuracy and latency, especially when the orig-
inal table contains small groups for a particular column set.
However, each stored sample has a storage cost equal to its
size, and the number of potential samples is exponential in
the number of columns. As a result, we need to be careful
in choosing the set of column-sets on which to build strati-
�ed samples.We formulate the trade-o� between storage cost
and query accuracy/performance as an optimization prob-
lem, described next.

�.�.� Problem Formulation
�e optimization problem takes three factors into account in
determining the sets of columns on which strati�ed samples
should be built: the “sparsity” of the data,workload character-
istics, and the storage cost of samples.

Sparsity of the data. A strati�ed sample on � is useful when
the original table T contains many small groups under �.
Consider aQCS � in table T . Recall thatD(�) denotes the set
of all distinct values on columns � in rows of T . We de�ne a
“sparsity” function ∆(�,M) as the number of groups whose
size in T is less than some number M�:

∆(�,M) = �{x ∈ D(�) ∶ �Tx � < M}�
Workload.A strati�ed sample is only useful when it is bene-
�cial to actual queries. Under our model for queries, a query
has a QCS q j with some (unknown) probability p j - that is,
QCSs are drawn from aMultinomial (p� , p� , ...) distribution.
�e best estimate of p j is simply the frequency of queries with
QCS q j in past queries.

Storage cost. Storage is the main constraint against build-
ing too many strati�ed samples, and against building strat-
i�ed samples on large column sets that produce too many
groups. �erefore, we must compute the storage cost of po-
tential samples and constrain total storage. To simplify the
formulation, we assume a single value of K for all samples;
a sample family � either receives no samples or a full sam-
ple with K elements of Tx for each x ∈ D(�). �S(�,K)� is the
storage cost (in rows) of building a strati�ed sample on a set
of columns �.
�Appropriate values for M will be discussed later in this section. Alterna-
tively, one could plug in di�erent notions of sparsity of a distribution in our
formulation.

Given these three factors de�ned above, we now introduce
our optimization formulation. Let the overall storage capacity
budget (again in rows) be C. Our goal is to select β column
sets from among m possible QCSs, say � i� ,�, � iβ , which can
best answer our queries, while satisfying:

β�
k=�
�S(� ik ,K)� ≤ C

Speci�cally, inBlinkDB, wemaximize the followingmixed
integer linear program (MILP) in which j indexes over all
queries and i indexes over all possible column sets:

G =�
j
p j ⋅ y j ⋅ ∆(q j ,M) (�)

subject to
m�
i=� �S(� i ,K)� ⋅ zi ≤ C (�)

and

∀ j ∶ y j ≤ max
i∶� i⊆q j∪i∶� i⊃q j

(zi min �,
�D(� i)��D(q j)� ) (�)

where � ≤ y j ≤ � and zi ∈ {�, �} are variables.
Here, zi is a binary variable determiningwhether a sample

family should be built or not, i.e., when zi = �, we build a
sample family on � i ; otherwise, when zi = �, we do not.

�e goal function (�) aims to maximize the weighted sum
of the coverage of the QCSs of the queries, q j . If we create a
strati�ed sample S(� i ,K), the coverage of this sample for q j
is de�ned as the probability that a given value x of columns q j
is also present among the rows of S(� i ,K). If � i ⊇ q j , then q j
is covered exactly, but � i ⊂ q j can also be useful by partially
covering q j . At runtime, if no strati�ed sample is available that
exactly covers a theQCS for a query, a partially-coveringQCS
may be used instead. In particular, the uniform sample is a
degenerate case with � i = �; it is useful for many queries but
less useful than more targeted strati�ed samples.

Since the coverage probability is hard to compute in prac-
tice, in this paper we approximate it by y j , which is deter-
mined by constraint (�).�e y j value is in [�, �], with �mean-
ing no coverage, and � meaning full coverage. �e intuition
behind (�) is that when we build a strati�ed sample on a
subset of columns � i ⊆ q j , i.e. when zi = �, we have par-
tially covered q j , too. We compute this coverage as the ra-
tio of the number of unique values between the two sets, i.e.,
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dimensional strati�ed samples. As described above, each
strati�ed sample can potentially be used at runtime to im-
prove query accuracy and latency, especially when the orig-
inal table contains small groups for a particular column set.
However, each stored sample has a storage cost equal to its
size, and the number of potential samples is exponential in
the number of columns. As a result, we need to be careful
in choosing the set of column-sets on which to build strati-
�ed samples.We formulate the trade-o� between storage cost
and query accuracy/performance as an optimization prob-
lem, described next.

�.�.� Problem Formulation
�e optimization problem takes three factors into account in
determining the sets of columns on which strati�ed samples
should be built: the “sparsity” of the data,workload character-
istics, and the storage cost of samples.

Sparsity of the data. A strati�ed sample on � is useful when
the original table T contains many small groups under �.
Consider aQCS � in table T . Recall thatD(�) denotes the set
of all distinct values on columns � in rows of T . We de�ne a
“sparsity” function ∆(�,M) as the number of groups whose
size in T is less than some number M�:

∆(�,M) = �{x ∈ D(�) ∶ �Tx � < M}�
Workload.A strati�ed sample is only useful when it is bene-
�cial to actual queries. Under our model for queries, a query
has a QCS q j with some (unknown) probability p j - that is,
QCSs are drawn from aMultinomial (p� , p� , ...) distribution.
�e best estimate of p j is simply the frequency of queries with
QCS q j in past queries.

Storage cost. Storage is the main constraint against build-
ing too many strati�ed samples, and against building strat-
i�ed samples on large column sets that produce too many
groups. �erefore, we must compute the storage cost of po-
tential samples and constrain total storage. To simplify the
formulation, we assume a single value of K for all samples;
a sample family � either receives no samples or a full sam-
ple with K elements of Tx for each x ∈ D(�). �S(�,K)� is the
storage cost (in rows) of building a strati�ed sample on a set
of columns �.
�Appropriate values for M will be discussed later in this section. Alterna-
tively, one could plug in di�erent notions of sparsity of a distribution in our
formulation.

Given these three factors de�ned above, we now introduce
our optimization formulation. Let the overall storage capacity
budget (again in rows) be C. Our goal is to select β column
sets from among m possible QCSs, say � i� ,�, � iβ , which can
best answer our queries, while satisfying:

β�
k=�
�S(� ik ,K)� ≤ C

Speci�cally, inBlinkDB, wemaximize the followingmixed
integer linear program (MILP) in which j indexes over all
queries and i indexes over all possible column sets:

G =�
j
p j ⋅ y j ⋅ ∆(q j ,M) (�)

subject to
m�
i=� �S(� i ,K)� ⋅ zi ≤ C (�)

and

∀ j ∶ y j ≤ max
i∶� i⊆q j∪i∶� i⊃q j

(zi min �,
�D(� i)��D(q j)� ) (�)

where � ≤ y j ≤ � and zi ∈ {�, �} are variables.
Here, zi is a binary variable determiningwhether a sample

family should be built or not, i.e., when zi = �, we build a
sample family on � i ; otherwise, when zi = �, we do not.

�e goal function (�) aims to maximize the weighted sum
of the coverage of the QCSs of the queries, q j . If we create a
strati�ed sample S(� i ,K), the coverage of this sample for q j
is de�ned as the probability that a given value x of columns q j
is also present among the rows of S(� i ,K). If � i ⊇ q j , then q j
is covered exactly, but � i ⊂ q j can also be useful by partially
covering q j . At runtime, if no strati�ed sample is available that
exactly covers a theQCS for a query, a partially-coveringQCS
may be used instead. In particular, the uniform sample is a
degenerate case with � i = �; it is useful for many queries but
less useful than more targeted strati�ed samples.

Since the coverage probability is hard to compute in prac-
tice, in this paper we approximate it by y j , which is deter-
mined by constraint (�).�e y j value is in [�, �], with �mean-
ing no coverage, and � meaning full coverage. �e intuition
behind (�) is that when we build a strati�ed sample on a
subset of columns � i ⊆ q j , i.e. when zi = �, we have par-
tially covered q j , too. We compute this coverage as the ra-
tio of the number of unique values between the two sets, i.e.,
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Experimental	  Setup	  

•  Conviva:	  30-‐day	  log	  of	  media	  accesses	  by	  
Conviva	  users.	  Raw	  data	  17	  TB,	  partitioned	  
this	  data	  across	  100	  nodes	  

•  Log	  of	  17,000	  queries	  (a	  sample	  of	  200	  
queries	  had	  17	  templates).	  	  

•  50%	  of	  storage	  budget:	  8	  Stratified	  Samples	  















 

























Sampling	  Vs.	  No	  Sampling	  

Fully 
Cached 
Partially 
Cached 















 

























BlinkDB:	  Evaluation	  















 

























BlinkDB:	  Evaluation	  

200-300x 
Faster! 



Response	  Time	  vs.	  Error	  













       


















Time	  Guarantees	  















        

























Error	  Guarantees	  











     















Related	  Work	  
Flexibility 

Efficiency 
Low flexibility / 
High Efficiency 

High flexibility / 
Low Efficiency 

Predictable++
Queries+

Predictable++
Access+
Patterns+

Predictable++
Query+
Column+Sets+

Unpredictable++
Queries+

Sketches,	  
Wavelets,	  
Histograms,	  
Join	  Synopses	  

STRAT	  
SciBORQ	  

AQUA	  
BlinkDB	  

OLA	  

Taxonomy	  of	  Workload	  Models 



BlinkDB	  is	  Open	  Sourced!	  
hqp://blinkdb.org	  

Deployed	  and	  used	  by	  

Integrated	  into	  Presto	  



Conclusion	  
•  ApproximaIon	  is	  an	  important	  means	  to	  
achieve	  interacIvity	  in	  the	  big	  data	  age	  

•  Ad-‐hoc	  exploratory	  queries	  on	  an	  
opImal	  set	  of	  mulI-‐dimensional	  
straIfied	  samples	  converges	  to	  lower	  
errors	  2-‐3	  orders	  of	  magnitude	  faster	  
than	  non-‐opImal	  strategies	  
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