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Cloud Computing

Paradigm shift: infrastructure, data processing

) economies of scale
I capital expenditure
1 pay-as-you-go

“"

Enterprise

C
9
-

®
O
Q

o
<

Cloud Provider

Application

( uwi («/ IME
(L ﬁi;//\ ¢ /ﬁi;//\




Cloud Databases Landscape

Database-as-a-Service
-1 Managed DBMS

1 Relational & NoSQL DBs

laaS-based DB Instances

1 Non managed DBMS
] Do It Yourself model
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laaS-deployed Databases

@ Trusted Advisor
‘ OpsWorks "W Aws cloud Optimization

App Management Tools

-1 Monitoring resources,
performance, cost

1 Event-driven scaling

1 NO cost vs performance
optimization
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Deployment Challenges
aaaa &GP

Data Management Application

Custom-built application
management tools
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Deployment Challenges
aaea R

Data Management Application

Meet SLOs
(Service Level Objective)

-1 Query-level: response time

-1 Workload level: average,
total, max, percentile

Cost

Performance
Management Management

Offer SLAs

(Service Level Agreement)

] SLO+ Violation penalties

Pay-as-you-go
Model
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Deployment Challenges
aaea R

Beyond mdnitoring & alerts
-1 Automatic scale up & down
1 Query routing & scheduling

) Cost-driven decisions

1 SLA-awareness

Data Management Application

Cost
Management

Performance
Management

Workload
Scheduling

Resource

Provisioning
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I
State-of-the-art

Placement Provisioning Scheduling
PMAX Auto Dolly Shepherd
(Liu et al.) (Rogers | (Cecchet (Chi et al.)
et al.) et all)
SLATree
(Chi et al.)
Multi-tenant SLOs iCBS
(Lang et al.) (Chi et al.)
Delphi / Pythia Hypergraph
(Elmore et al.) (Catalylrek et al.)
SCOPE Bazaar many traditional
(Chaiken et al.) (Jalaparti et al.) methods ...




Query deadline Workload deadline

State'Of'the'art . Average latency . Percentile deadline

- Piecewise linear

Placement Provisioning Scheduling

Auto Dolly Shepherd
(Rogers | (Cecchet (Chi et al.)
et al.) et all)
SLATree
(Chi et al.)
Multi-tenant SLOs
(Lang et al.)

Hypergraph
(Catalylrek et al.)

Bazaar many traditional
(Jalaparti et al.) methods ...
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Wish List

Challenges

End-to-end cost-aware service complex
(resource provisioning, workload scheduling) interactions

Application-defined performance goals arbitrary

(per query deadline, percentile, average latency, max latency ) goals

arbitrary

Agnostic to workload semantics
workloads

machine learning: auto modeling and insight



WiSeDB Advisor

Data Management Application

Cost SLA
Management Management

Offline Learning

- batch scheduling

Online Learning

Resource Workload

| Provisioning Scheduling
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1 online scheduling

1 performance model free
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Outline

Offline Learning

dSystem Overview

- A dSupervised Learning

/
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JAdaptive Learning
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WiSeDB: A Learning-based Workload Management Advisor for Cloud Databases,
Ryan Marcus, Olga Papaemmanouil, VLDB 2016



WiSeDB — Batch Processing

Workload & SLO Spec

Data Management Application

(Offline) Training

2min 0.5min

SLO: 3min SLO: 1min

Penalty Function
$$/sec past deadline

Model
Generator




WiSeDB — Batch Processing

Workload & SLO Spec

Data Management Application

(Offline) Training

2min 0.5min

SLO: 3min SLO: 1min

SLA Spec
$$/sec past deadline

Model
Generator

el B
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1 OLAP on full replicas (no updates)
. Known queries / VA, \/
1 Performance model

g
4




.
WiSeDB — Batch Processing

Original SLO

Data Management Application

(Offline) Training

3min 1min

SLO: 3min SLO: 1min

Stricter SLO

Model
Generator

Strategy
Recommendations

2.5min 0.15min

SLO: 3min SLO: 1min




Batch Execution

Resources to rent
1 #VMs/ type
Query scheduling

1 Query execution order for
each recommended VM

ASSUMPTIONS

Q OLAP on full replicas (no updates)
0 Known query types
O Performance prediction model

Y -

Runtime

Query
Batch

Data Management Application

(Offline) Training

T Model

Generator

Strategy
Recommendations

(Online)
Resource &
Workload

Management

Strategy
Generator
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Model

Supervised Learning Generator

: | classes == actions IR Ke[E o1l s l-Ne[I[=IgVACR-MVAY/
identify classes gl 0 provision new VM
create context of actions EERGERGVACE Re Sl il
training data U extract cost-related features
decision tree : :
generate S (1 describe (context, action)
classifier O interpretable: offers insight




“To be the best, learn from the best” (‘D. LaCroix) Model

Offline Learning

identify

best decisions

1. Generate small workioag |

2. Build decision graph
- query assignment
-1 VM provisioning

3. Find optimal (minimum
cost) solution (path)

4. Extract context of
optimal decisions

generate

model

1. Repeat for many
sample workloads

2. Build a training set
of (feature, action)

3. Train a classifier

Generator

Runtime Scheduling

apply
model

- Use classifier for
I batch scheduling
1 online scheduling

cost exploration

1 performance vs J




Decision Graph Model

Generator

Monetary Cost
) Resource usage ($$/time)
1 time = VM start up + query execution

1 Violation fees
1 Penalty function (black box)




Search for Optimal

A* search (best-first)
for optimal

/M

Model
Generator
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Search for Optimal
Generator

A* search (best-first)

for optimal
ofe

Graph-based Approach Pros
1 Step-by-step decisions

1 Graph reduction techniques
1 Fast search for optimal




Feature Extraction

588

- —
Decision: Assign E to VM

Features:
0 unassigned E : true

) unassigned |Q|: false

Agnostic to

J Query semantics

) Performance goal (SLO)
1 Workload size

) cost of assigning B :$2
J wait time on VM: 1min
3 % of [&]in VM: 50%

2 % of Q) in vM: 509
B




Decision Model N

Strategy
Generator

e e
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walt tlme’?
<2 Reserve new VM (VM,)
“N is E unaSS|gned’? ’ Assign g to VM;

true false

‘ cost of assign B?

<100

>=100

Ql is IQ unassigned?

true Ise
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Decision Model N

Strat
T

Reserve new VM (VM,)

g il Wy

wait time?

T —

>=2 <2
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Decision Model

g il Wy

wait time?

true

€ cost of assign @? > .

<100

“-:. is IQ unassigned?

= ‘»

<2
@i E unassigned? Pp

SLO: 1min

SLO: 3min

Strategy
o [

false

>=100

true

Ise

Reserve new VM (VM,)

Assign g to VM,

Assign B to VM,
Reserve new VM (VM,)

Q to VM2
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e
Experimental Setup

60 [

Training Data 50|

3000 samples

10 TPC-H templates =407
18 queries/sample

Cost (cents
w
o

N
o

PerQuery Average Max Percent

>

query execution time <=x secs
(same deadline per template)



Experimental Setup

60
Training Data 50|
3000 samples
10 TPC-H templates %407
18 queries/sample o
L30¢
2
O}
10 ¢
0

PerQuery Average Max Percent

average latency of the
workload <= x secs



Experimental Setup

60
Training Data 50|
3000 samples
10 TPC-H templates %407
18 queries/sample o
L30¢
2
O}
10 ¢
0

PerQuery Average Max Percent

\

max latency <=x secs
(longest query in the workload )



Experimental Setup

60
Training Data 50|
3000 samples
10 TPC-H templates %407
18 queries/sample o
L30¢
2
O}
10 ¢
0

PerQuery Average Max Percent

=

execution time of 90% of queries
in the workload <= x secs
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Experimental Setup

60 [

Training Data 50|

3000 samples

10 TPC-H templates
18 queries/sample

Testing Data

10 TPC-H templates 10 ¢
varied queries/workload

PerQuery Average Max Percent



Experimental Setup

60
Training Data 50|
3000 samples
10 TPC-H templates %407
18 queries/sample o
L30¢
2
_ © o0t
Testing Data
10 TPC-H templates 10 ¢
varied queries/workload

0

L . PerQuery Average Max Percent
cost. resource utzllzatlon+ penalttes

AWS Cloud
fees penalty $0.01/sec of violation




Effectiveness (small workloads)

60 '

. . WiSeDB s
Training Data Optimal
3000 samples 50+ _

10 TPC-H templates
18 queries/sample

Testing Data

10 TPC-H templates

30 queries/workload
Optimal: Brute force

PerQuery Average Max Percent
Performance Goal

WiSeDB models are within 8% of the minimum cost solution
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Effectiveness (large workloads)

200
Training Data o0l FI'Z:IPI —
3000 samples Pack9 ==
10 TPC-H templates 180 WiSeDB
18 queries/sample :9;1 20 b

(®)

Testing Data 2160
10 TPC-H templates 5150+
5000 queries/workload 140
One heuristic cannot 1307
fit all 120

V_\"39DB Ie_ar_ns the Best shortest query first Best: top-90% shortest then
right heuristic =S query 10% longest queries
Best: longest query first
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Training Overhead

120 STempIatés —
10 Templates m—
Lo 100 | 15 Templates =0 -
Training Data 20 Templates s
80 |
3000 samples ~
10 TPC-H templates o 60|
18 queries/sample - a0l
20
140 . \ \ . 0
51TType — PerQuery Average  Max  Percent
1201 4o nggg — 1 Performance Goal
100 |
@ 80f
(O}
=
i= 6071 : .
Offline learning overhead
40 |
20sec — 120 sec
20 |
0

PerQuery Average Max Percent
Performance Goal



-
Beyond Batch Scheduling

- Efficient performance vs cost trade off exploration
- Recommend strategies with stricter/looser performance goals

- Reuse original training set to generate quickly alternative models
- Best-first heuristic reduces search time (dominant training factor)

- Training overhead improvement by 96-98%

- Online scheduling (query at a time)
- Challenge: arrival times are unknown and hence not modeled
- Generate a new model upon arrival of new query: too expensive
- Optimization 1: Adapt previous model to reduce training overhead
- Optimization 2: Reuse past models, when feasible



Offline Learning

Advantages

-1 Provides insight on
complex decisions

1 Learns custom
strategies per application

1 Explores performance vs
cost trade-offs

Data Management Application

(Offline) Training (Online)
Resource &

Model Workload
Generator Management

Strategy Strategy
Recommendations Generator




Offline Learning

Data Management Application

Limitations
(Offline) Training (Online)
] Static decision models Resource &
Model Workload
Generator Management

1 Batch scheduling

Strategy

1 Performance model
Generator

Strategy
Recommendations




Outline
- / QExplicit vs Implicit Modeling

Online Learning

dReinforcement Learning

Releasing Cloud Databases from the Chains of Predictions Models.
Ryan Marcus, Olga Papaemmanouil, CIDR 2017



(Explicit) Performance Prediction

- DBMS-related challenges
Cl isolated vs. concurrent query execution
-l low accuracy for new query types (“templates”)
- extensive off-line training
O state-of-the-art: 15-20% prediction error*

- Cloud-related challenges
2 “noisy neighbors”
- numerous resource configurations
) predictions errors accumulation

* Contender: A Resource Modeling Approach for Concurrent Query Performance Prediction,
Jenny Duggan, Olga Papaemmanouil, Ugur Cetintemel, Eli Upfal, EDBT 2015

* Performance Prediction for Concurrent Database Workloads,
Jennie Rogers, Ugur Cetintemel, Olga Papaemmanouil, Eli Upfal, SIGMOD 2011



WiSeDB: Implicit Performance Modeling

2 Explicit performance models are NOT necessary for:
1 monetary cost management
- resource & workload management
- offer performance SLA and keep penalties low

2 Implicitly model query latency
2 predict monetary cost ( & violation penalties)

-1 Online training for dynamic environments
1 Automatic scaling & workload distribution

Wish List #2



Reinforcement Learning

I Continuous learning

1 Explicit reward modeling

1 Action selection

1 maximize reward ﬁ

action | T reward

internal
state
past experiences)

observation

Environment




e
CMABs

(Contextual Multi-Armed Bandits)

Contextual Multi-Armed agent
Bandit Problem \GIPQJQ )
Armed Bandit = Slot Machine | <2

i
Which slot machine to play _ |
(action) so that you walk out action | T reward observation
with the most $$$ (reward)?




CMABs in WiSeDB

(Contextual Multi-Armed Bandits)

internal

Contextual Multi state

Bandit Problem

-Armed

Slot Machine = Virtual Machine

Which machine to use (new/
old) (action) so that you

execute the incoming query
with minimum cost $$ (cost)?

action | T cost $$ observation

Environment




e
CMABs in WiSeDB

(Contextual Multi-Armed Bandits)

Action (per VM)
1 Accept internal

-l Pass to next /new VM — = state
- Down one VM tier ! /(past experiences)

Reward
1 $9% cost: processing & SLA

violation penalties observation

Observation

1 environment context
(query, VM)

] action

1 $% cost




CMABs in WiSeDB

(Contextual Multi-Armed Bandits)

Action (per VM)
1 Accept

) Pass to next /new VM
-1 Down one VM type

Reward
1 $9% cost: processing & SLA
violation penalties

Observation

1 environment context
(query, VM)

] action

1 $% cost

Data Management Application

—

'l SLA

QQQ

= ny

action

internal
state
past experiences)

observation




e
CMABs in WiSeDB

(Contextual Multi-Armed Bandits)

Action (per VM)
1 Accept

1 Pass to next /new VM
-1 Down one VM type

Reward
1 $9% cost: processing & SLA

violation penalties observation

Observation

1 environment context
(query, VM)

] action

1 $% cost

1))
||




e
CMABs in WiSeDB

(Contextual Multi-Armed Bandits)

Action (per VM)

| Accept (pass, context, $$)
I Pass to next /new VM = | (down, context, $$)
-1 Down one VM type J (accept, context, $)
Reward

1 $9% cost: processing & SLA

violation penalties 1 cost $3 observation

Observation

1 environment context
(query, VM)

] action

1 $% cost




CMABs in WiSeDB

(Contextual Multi-Armed Bandits)

Action (per VM)
1 Accept

) Pass to next /new VM
-1 Down one VM type

Reward
1 $9% cost: processing & SLA
violation penalties

Observation

1 environment context
(query, VM)

] action

1 $% cost

Data Management Application

—

lSLA
QQQ

= ny

action

(pass, context, $3)

(down, context, $$)
(accept, context, $)

2

observation




Online Learning

Context Features

Data Management Application

-l VM context

- memory, I/O rate

21 #queries in queue Model

Generator

-] Query context
tables used by current query

d - Context Experience
) tables used by old query Collector Collector
1 # table scans

1 # joins

1 # spill joins

u

cache reads in the plan




Online Learning

Action Selection

Data Management Application

-1 Explore opportunities

1 gather information
Model

1 Exploit “safe” actions Generator

! make best decision

iven current information _
9 Context Experience

Collector Collector




Probabilistic Action Selection

0 Select action according to probability of being the best

-1 Past observations (action, context, cost) D={(x,a,c,)}
- modeled by likelihood function over cost ¢ : P(cla,x,0)
- 9: parameters of likelihood function: splits of a regression tree

2 if (#joins in the query =1) and (queries in the queue =3 ) => cost = $3

) Posterior distribution of 6 (Bayes rule) perfect decision
tree is unknown

/

d Choose action o’ to minimize cost for perfect model 6*

P@O1D) x| | P(c;1a;,x,0)P(6)
2 P(B): prior distribution of parameters 6

min E(c | a,x,0)]
a



Probabilistic Action Selection

- Exploitation: pick action based on mean of posterior P(6|D)
minE(cld’,x)= [E(cld,x,0)P(01D)d0

-1 Exploration: pick a random action

2 Thompson Sampling: balance exploration/exploitation

Select random action according to probability that it is the best
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WiSeDB Action Selection

lcontext X; argminE(c | x,,a.,6,)] D=DU(x,,a,c,)
Sample random S :
elect best action «; Observe cost ¢,
parameter 6, — : f— !
according to P(0] D) according to 6! update model

¢ I

Select a random training set,
generate the regression tree and
pick best action according to it

Update the experience set

Create new model



Effectiveness

Training Data

30 query sequence

22 TPC-H templates
repeat until convergence

Optimal: brute force (NP-hard)
Clairvoyant: perfect cost model

Amazon AWS
t2.large, t2.medium, t2.small

Converged cost (1/10 cent)

Global Optim‘al —
Clairvoyant Greedy s
WiSeDB === |

160 |
140 |
120 |
100 |
80 |
60 |
40 |
20 |

Average Per Query Max Percentile
SLA Type

WiSeDB models can perform at the
same cost as a perfect cost model



Effectiveness (concurrency)

500 ‘ i ‘ ‘ ‘
i = WiSeDB, one query at a time
Training Data o WiSeDB, one query per vCPU ——
g 400 é/;\IIiSeDB, two queries per vCPU
o i airvoyant, one query at atime - - -
22 TPC-H templates = Clairvoyant, one query per vVCPU - - -
900 queries/hour =z Clairvoyant, two queries per vCPU
. P © 300
Poison distribution S
@
_ 2 200}
Clairvoyant. perfect cost model 2
O o — — —
. ()
.- D 100 1
One query/vCPU: 1-2 queries e A — ]
Two queries/vCPU: 2-4 queries z
0

0 1000 2000 3000 4000 5000 6000 7000
Queries processed

WiSeDB models handles concurrency
levels with no pre-training or tuning
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Adaptivity

800

All new templétes at once -
700 New templates over time

Training Data

600

13 TPC-H templates
900 queries/hour

Poison distribution
Max SLO

500

400

300

200

all new at once. 7 new templates
every 2000 queries (after

100 |

Average cost per query (1/10 cent)

convergence) 00500 1000 1500 2000 2500 3000 3500 4000
Queries processed
new over time. 1 new template
every 500 queries
WiSeDB models quickly adapt to

new unseen before templates



Next Steps: Prediction-free Batch Scheduling

1 Train once, use “forever”?
1 obsolescence detection
and correction
1 SVMs: Support Vector Machines Cost SLA
) detect decision boundaries Management Management
based on cost, SLO slack,
SLA violation risk

Data Management Application

Resource Workload

Provisioning Scheduling

3min 1min

SLO: 3min SLO: 1min




Next Steps: End-to-End Online Learning

] Query Scheduling
1 query ordering actions

1 Shut-down strategy
1 hill-climbing learning

- Training overhead
] search space reduction
1 warm bootstrapping

Data Management Application

Cost SLA
Management Management
Resource Workload
Provisioning Scheduling




Next Steps: Learning-based Pricing

1 Resource consumption &
SLA pricing

] Predicted cost == minimum price
] no SLA violation fees

1 System & economics interplay
- fairness & competition affects
system design
1 “learn” the pricing scheme &
system decisions that offers
pricing fairness

Data Management Application

Cost SLA
Management Management

Resource Workload

Provisioning Scheduling




Conclusions

) Cost and performance management for laaS-deployed
data managements apps are becoming more complex
1 human ability to derive insight remains the same

- WiSeDB demonstrates how ML techniques can
- offer insight on the complex interplay of cost vs performance
-1 discover customized solutions for app-specific SLAs
1 automate complex application management decisions
-1 adapt to workload and resource configurations
- build systems that perform beyond unaided human heuristics



Our Database Group
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Ryan Marcus Kyriaki Dimitriadou Zhan Li

Cloud Databases Interactive Data Exploration Benchmarking Optimizers
Machine Learning Machine Learning Statistical Analysis



THANK YOU

Questions?




