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Wish List
Challenges 

complex 
interactions

arbitrary 
workloads

arbitrary 
goals

End-to-end cost-aware service 
(resource provisioning, workload scheduling)

Agnostic to workload semantics 

Application-defined performance goals
(per query deadline, percentile, average latency, max latency )

machine learning: auto modeling and insight
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WiSeDB: A Learning-based Workload Management Advisor for Cloud Databases, 
Ryan Marcus, Olga Papaemmanouil, VLDB 2016
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Batch Execution 
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Supervised Learning

identify classes

create
training data

generate 
classifier

q dispatch a query to a VM
q provision new VM

q identify best decisions
q extract cost-related features

q describe (context, action)
q interpretable: offers insight 

classes == actions

decision tree

context of actions

Model 
Generator



“To be the best, learn from the best” ( D. LaCroix)

identify
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Effectiveness (small workloads)
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Effectiveness (large workloads)
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Training Overhead

Training Data
3000 samples
10 TPC-H templates
18 queries/sample
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Beyond Batch Scheduling
• Efficient performance vs cost trade off exploration

• Recommend strategies with stricter/looser performance goals
• Reuse original training set to generate quickly alternative models

• Best-first heuristic reduces search time (dominant training factor)
• Training overhead improvement by 96-98%

• Online scheduling (query at a time)
• Challenge: arrival times are unknown and hence not modeled
• Generate a new model upon arrival of new query: too expensive
• Optimization 1: Adapt previous model to reduce training overhead
• Optimization 2: Reuse past models, when feasible
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Releasing Cloud Databases from the Chains of Predictions Models. 
Ryan Marcus, Olga Papaemmanouil, CIDR 2017



(Explicit) Performance Prediction
q DBMS-related challenges

q isolated vs. concurrent query execution
q low accuracy for new query types (“templates”)
q extensive off-line training 
q state-of-the-art: 15-20% prediction error*

q Cloud-related challenges
q “noisy neighbors”
q numerous resource configurations
q predictions errors accumulation 

* Contender: A Resource Modeling Approach for Concurrent Query Performance Prediction, 
Jenny Duggan, Olga Papaemmanouil, Ugur Cetintemel, Eli Upfal, EDBT 2015

* Performance Prediction for Concurrent Database Workloads, 
Jennie Rogers, Ugur Cetintemel, Olga Papaemmanouil, Eli Upfal, SIGMOD 2011



WiSeDB: Implicit Performance Modeling 
q Explicit performance models are NOT necessary for:

q monetary cost management
q resource & workload management 
q offer performance SLA and keep penalties low

q Implicitly model query latency 
q predict monetary cost ( & violation penalties)

q Online training for dynamic environments
q Automatic scaling & workload distribution

Wish List #2 
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(Contextual Multi-Armed Bandits) 
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Online Learning
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Probabilistic Action Selection

q Select action according to probability of being the best 
q Past observations (action, context, cost)

q modeled by likelihood function over cost  c : 
q θ: parameters of likelihood function: splits of a regression tree 

q if  (# joins in the query =1) and (queries in the queue =3 ) => cost = $$

q Posterior distribution of θ (Bayes rule)

q P(θ): prior distribution of parameters θ

q Choose action α’ to minimize cost for perfect model θ* 

min
ʹa
Ε(c | ʹa , x,θ *)]

D = {(xi,ai,ci )}
P(c |α, x,θ )

P(θ |D)∝ P(ci | ai, xi,θ )∏ P(θ )

perfect decision 
tree is unknown



q Exploitation: pick action based on mean of posterior P(θ|D)

q Exploration: pick a random action

q Thompson Sampling: balance exploration/exploitation

Select random action according to probability that it is the best

Probabilistic Action Selection

min
ʹa
Ε(c | ʹa , x) = Ε(c | ʹa , x,θ )P(θ |D)dθ∫



WiSeDB Action Selection

Sample random 
parameter θi

according to P(θ| D)
Select best action αi

according to θ t
Observe cost ci
update model

argmin
αi

Ε(c | xi,ai,θi )]context xi D = D∪ (x i ,ai,c i )

Select a random training set, 
generate the regression tree and 
pick best action according to it 

Update the experience set 

Create new model 



Effectiveness

Amazon AWS
t2.large,  t2.medium, t2.small

Training Data
30 query sequence 
22 TPC-H templates
repeat  until convergence

Optimal: brute force (NP-hard)
Clairvoyant: perfect cost model

WiSeDB models can perform at the 
same cost as a perfect cost model
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Effectiveness (concurrency) 
Training Data

22 TPC-H templates
900 queries/hour
Poison distribution 

Clairvoyant: perfect cost model

One query/vCPU: 1-2 queries

Two queries/vCPU: 2-4 queries

WiSeDB models handles concurrency 
levels with no pre-training or tuning
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Adaptivity
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Next Steps: Prediction-free Batch Scheduling

Data Management Application

Cost 
Management

SLA 
Management

Resource 
Provisioning

Workload 
Scheduling

q Train once, use “forever”?
q obsolescence detection

and correction
q SVMs: Support Vector Machines

q detect decision boundaries 
based on  cost, SLO slack,  
SLA violation risk
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Provider
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Next Steps: End-to-End Online Learning

Data Management Application

Cost 
Management

SLA 
Management

Resource 
Provisioning

Workload 
Scheduling

q Query Scheduling
q query ordering actions

q Shut-down strategy 
q hill-climbing learning

q Training overhead
q search space reduction
q warm bootstrapping 

IaaS
Provider
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Next Steps: Learning-based Pricing

Data Management Application

Cost 
Management

SLA 
Management

Resource 
Provisioning

Workload 
Scheduling

q Resource consumption & 
SLA pricing

q Predicted cost == minimum price
q no SLA violation fees

q System & economics interplay
q fairness & competition affects

system design
q “learn” the pricing scheme &

system decisions that offers
pricing fairness

IaaS
Provider

VM VM VM VM



Conclusions
q Cost and performance management for IaaS-deployed 

data managements apps are becoming more complex
q human ability to derive insight remains the same

q WiSeDB demonstrates how ML techniques can
q offer insight on the complex interplay of cost vs performance
q discover customized solutions for app-specific SLAs
q automate complex application management decisions
q adapt to workload and resource configurations
q build systems that perform beyond unaided human heuristics
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