
1

Distributed Private Data
Collection at Scale

Graham Cormode
g.cormode@warwick.ac.uk

Tejas Kulkarni (Warwick)

Divesh Srivastava (AT&T)

Big data, big problem?

¨ The big data meme has taken root
– Organizations jumped on the bandwagon
– Entered the public vocabulary

¨ But this data is mostly about individuals
– Individuals want privacy for their data
– How can researchers work on sensitive data?

¨ The easy answer: anonymize it and share
¨ The problem: we don’t know how to do this

2

Data Release Horror Stories

3

We need to solve this
data release problem...

Differential Privacy (Dwork et al 06)

A randomized algorithm K satisfies ε-differential
privacy (DP) if:

Given two data sets that differ by one individual,
D and D’, and any property S:

Pr[K(D) Î S] ≤ eε Pr[K(D’) Î S]

• Can achieve DP for counts by adding a random noise value
• Uncertainty “hides” whether someone is present in the data
• Slowly being adopted in practice (e.g. US Census 2020)

Privacy with a coin toss

Perhaps the simplest possible DP algorithm
¨ Each user has a single private bit of information

– Encoding e.g. political/sexual/religious preference, illness, etc.
¨ Toss a (biased) coin

– With probability p > ½, report the true answer
– With probability 1-p, lie

¨ Collect the responses from a large number N of users
– Can ‘unbias’ the estimate (if we know p) of the population fraction
– The error in the estimate is proportional to 1/√N

¨ Gives differential privacy with parameter ε = ln (p/(1-p))
– Works well in theory, but would anyone ever use this?

5

Privacy in practice

¨ Differential privacy based on coin tossing is widely deployed
– In Google Chrome browser, to collect browsing statistics
– In Apple iOS and MacOS, to collect typing statistics
– By Snap(chat) to instantiate machine learning models
– This yields deployments of over 100 million users

¨ The model where users apply differential privately and then
aggregated is known as “Local Differential Privacy”
– The alternative is to give data to a third party to aggregate
– The coin tossing method is known as ‘randomized response’

¨ Local Differential privacy is state of the art in 2019:
Randomized response invented in 1965: five decade lead time!

6

RAPPOR: Bits with a twist

¨ Each user has one value out of a very large set of possibilities
– E.g. their favourite URL, www.bbc.co.uk

¨ First attempt: run randomized response for all possible values
– Do you have google.com? Nytimes.com? Bing.com? Bbc.co.uk?...

¨ Meets required privacy guarantees with parameter 2 ln(p/(1-p))
– If we change a user’s choice, then at most two bits change:

a 1 goes to 0 and a 0 goes to 1
¨ Slow: sends 1 bit for every possible choice

– And limited: can’t easily handle new options being added
¨ Try to do better by reducing domain size through hashing

7

http://www.bbc.co.uk/

Bloom Filters + Randomized Response

¨ Idea: apply Randomized response to the bits in a Bloom filter
– Not too many bits in the filter compared to all possibilities

¨ Each user maps their input to at most k bits in the filter
– New choices can be counted (by hashing their identities)

¨ Privacy guarantee with parameter k ln (p/(1-p))
– Combine all user reports and observe how often each bit is set

8

item

1/0 1/0 1/00/1 0/1 0/10/10/1 0/1 0/1

Decoding noisy Bloom filters

¨ We obtain a Bloom filter, where each bit is now a probability
¨ To estimate the frequency of a particular value:

– Look up its bit locations in the Bloom filter
– Compute the unbiased estimate of the probability each is 1
– Take the minimum of these estimates as the frequency

¨ More advanced decoding heuristics to decode all at once
¨ How to find frequent strings without knowing them in advance?

– Subsequent work: build up frequent strings character by character
(using statistics on character co-occurrences)

9

Rappor in practice

¨ The Rappor approach was implemented in the Chrome browser
– Collects data from opt-in users, tens of millions per day
– Open source implementation available

¨ Tracks settings in the browser (e.g. home page, search engine)
– Identify if many users unexpectedly change their home page

(indicative of malware)
¨ Typical configuration:

– 128 bit Bloom filter, 2 hash functions, privacy parameter ~0.5
– Needs about 10K reports to identify a value with confidence

10

Apple: sketches and transforms

¨ Similar problem to Rappor:
want to count frequencies of many possible items
– For simplicity, assume each user holds a single item
– Want to reduce the burden of collection:

can we further reduce the size of the summary?
¨ Instead of Bloom Filter, make use of sketches [C, Muthukrishnan 04]

– Similar idea, but better suited to capturing frequencies

11

Count-Min Sketch + Randomized Response

¨ Each user encodes their (unit) input with a Count-Min sketch
– Then applies randomized response to each entry

¨ Aggregator adds up all received sketches, unbiases the entries
¨ Take an unbiased estimate from the sketch based on mean

– More robust than taking min when there is random noise

¨ Can bound the accuracy in the estimate via variance computation
– Error is a random variable with variance proportional to ‖x‖2

2/(sn)
– I.e. (absolute) error decreases proportional to 1/√n, 1/√sketch size

¨ Bigger sketch size s à more accuracy
– But we want smaller communication?

12

One weird trick: Hadamard transform

¨ The distribution of interest could be sparse and spiky
– This is preserved under sketching
– If we don’t report the whole sketch, we might lose information

¨ Idea: transform the data to ‘spread out’ the signal
– Hadmard transform is a discrete Fourier transform
– We will transform the sketched data

¨ Aggregator reconstructs the transformed sketch
– Can invert the transform to get the sketch back

¨ Now the user just samples one entry in the transformed sketch
– No danger of missing the important information – it’s everywhere
– Variance is essentially unchanged from previous case

¨ User only has to send one bit of information
13

Apple’s Differential Privacy in Practice

¨ Apple use their system to collect data from iOS and OSX users
– Popular emjois: (heart) (laugh) (smile) (crying) (sadface)
– “New” words: bruh, hun, bae, tryna, despacito, mayweather
– Which websites to mute, which to autoplay audio on!
– Which websites use the most energy to render

¨ Deployment settings:
– Sketch size w=1000, d=1000
– Number of users not stated
– Privacy parameter 2-8

(some criticism of this)

14

Going beyond counts of data

¨ Simple frequencies can tell you a lot, but can we do more?
¨ Our work [SIGMOD18]: materializing marginal distributions

– Each user has d bits of data (encoding sensitive data)
– We are interested in the distribution of combinations of attributes

15

Gender Obese High BP Smoke Disease

Alice 1 0 0 1 0

Bob 0 1 0 1 1

…

Zayn 0 0 1 0 0

Disease/Smoke 0 1

0 0.55 0.15

1 0.10 0.20

Gender/Obese 0 1

0 0.28 0.22

1 0.29 0.21

Nail, meet hammer

¨ Could apply Randomized Reponse to each entry of each marginal
– To give an overall guarantee of privacy, need to change p
– The more bits released by a user, the closer p gets to ½ (noise)

¨ Need to design algorithms that minimize information per user
¨ First observation: the sampling trick

– If we release n bits of information per user, the error is n/√N
– If we sample 1 out of n bits, the error is √(n/N)
– Quadratically better to sample than to share!

16

What to materialize?

Different approaches based on how information is revealed
1. We could reveal information about all marginals of size k

– There are (d choose k) such marginals, of size 2k each
2. Or we could reveal information about the full distribution

– There are 2d entries in the d-dimensional distribution
– Then aggregate results here (obtaining additional error)

¨ Still using randomized response on each entry
– Approach 1 (marginals): cost proportional to 23k/2 dk/2/√N
– Approach 2 (full): cost proportional to 2(d+k)/2/√N

¨ If k is small (say, 2), and d is large (say 10s), Approach 1 is better
– But there’s another approach to try…

17

Hadamard transform (again)

Instead of materializing the data, we can transform it
¨ The Hadamard transform is the discrete

Fourier transform for the binary hypercube
– Very simple in practice

¨ Property 1: only (d choose k) coefficients
are needed to build any k-way marginal
– Reduces the amount of information to release

¨ Property 2: Hadamard transform is a linear transform
– Can estimate global coefficients by sampling and averaging

¨ Yields error proportional to 2k/2dk/2/√N
– Better than both previous methods (in theory)

18

Outline of error bounds

How to prove these error bounds?
¨ Create a random variable Xi encoding the error from each user

– Show that it is unbiased: E[Xi]=0, error is zero in expectation
¨ Compute a bound for its variance, E[Xi

2] (including sampling)
¨ Use appropriate inequality to bound error of sum, |∑i=1

N Xi|
– Bernstein or Hoeffding in equalities: error like √(N/E[Xi

2])
– Typically, error in average of N goes as 1/√N

¨ Possibly, second round of bounding error for further aggregation
– E.g. first bound error to reconstruct full distribution, then error

when aggregating to get a target marginal distribution

19

Empirical behaviour

¨ Compare three methods: Hadamard based (Inp_HT), marginal
materialization (Marg_PS), Expectation maximization (Inp_EM)

¨ Measure sum of absolute error in materializing 2-way marginals
¨ N = 0.5M individuals, vary privacy parameter ε from 0.4 to 1.4

20

Applications – χ-squared test

¨ Anonymized, binarized NYC taxi data
¨ Compute χ-squared statistic to test correlation
¨ Want to be same side of the line as the non-private value!

21

Application – building a Bayesian model

¨ Aim: build the tree with highest mutual information (MI)
¨ Plot shows MI on the ground truth data for evaluation purposes

22

Range Queries

¨ Given data from an ordered domain, we study range queries:
– “How many data points fall in the range [l, r]”?

¨ Hierarchical approaches improve over summing point queries:
a) Impose a regular tree over the input domain, and sample nodes

n Need to do post-processing to obtain consistent answers
b) Apply a Haar wavelet transform to input, and sample coefficients

¨ Which method is best? Answer: both are competitive!
– Similar variance (up to leading constant) for optimal settings
– Similar empirical performance, slight preferences for different ε
– In contrast to the centralized case, where trees are preferred

23

Quantile queries

¨ Use range queries to find ranges that cover a given fraction
– E.g. the median is the 0.5 quantile query

¨ Both Hierarchical Histograms (HH) and Haar wavelets obtain
similar results: very accurate answers for N large enough

24

Conclusions

¨ Private data release is a confounding problem!
– We haven’t yet got it right consistently enough
– The idea of “1 click privacy” is still a long way off

¨ Current privacy work gives some cause for optimism
– Statistical privacy, safety in numbers, and massive deployments

¨ Lots of opportunity for new work:
– Designing optimal mechanisms for local differential privacy
– Extend beyond simple counts and marginals
– Structured data: graphs, movement patterns
– Unstructured data: text, images, video?

25

Joint work with Divesh Srivastava (AT&T), Tejas Kulkarni (Warwick)
Supported by AT&T, Royal Society, European Commission

