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Abstract

In the QBIC (Query By Image Content) project we are studying methods to query large
on-line image databases using the images’ content as the basis of the queries. Examples of
the content we use include color, texture, and shape of image objects and regions. Potential
applications include medical (“Give me other images that contain a tumor with a texture like this
one”), photo-journalism (“Give me images that have blue at the top and red at the bottom”),
and many others in art, fashion, cataloging, retailing, and industry.

We describe a set of novel features and similarity measures allowing query by color, texture,
and shape of image object. We demonstrate the effectiveness of the QBIC system with normal-
ized precision and recall experiments on test databases containing over 1000 images and 1000
objects populated from commercially available photo clip art images, and of images of airplane
silhouettes. We also consider the efficient indexing of these features, specifically addressing two
problems: (a) for our feature vectors, the desired distance function is not Euclidean, and/or
(b) the vectors have high dimensionality. We propose novel, general solutions to both problems
by allowing some “false alarms” (“false hits”, or “false positives”) but no false dismissals. For
the first problem, we introduce a new theorem that makes indexing possible by bounding the
non-Euclidean, full cross-term quadratic distance expression with a simple Euclidean distance.
For the second, we illustrate how orthogonal transforms, such as the Karhunen Loeve transform,
can help reduce the dimensionality, without introducing false dismissals.

The resulting QBIC system offers high quality of output, and significant speedup over
straightforward indexing alternatives. The system is implemented in X/Motif and C running

on an RS/6000.
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1 Introduction

Current technology allows us to generate, scan, transmit, store, and manipulate large numbers
of digital images. In practice, we access images based on captions [10]. Although useful, there
are several problems with this approach, such as the fact that often the original keywords do
not allow for unanticipated search in subsequent applications, and more important, inadequacy of
uniform textual descriptions of such categories as color, texture, shape, layout etc. In addition,
many applications need to be able to select all images “like” some other image. In other words,
in addition to the simple text-based queries that can be handled today, we wish to allow users
to search through databases consisting of millions of images using sketches, layout or structural
descriptions, texture, color, sample images, and other iconic and graphical information to specify
the images desired. An example query might be: Find all images with a pattern similar to one to
which the user is pointing.

The size of the image database to be searched can be very large (in the range of hundreds of
thousands) in the fields of art, medicine, photo-agencies etc. We call the above search techniques
query by image content ((QBIC) and they have important distinctions compared to traditional
searches. They are approximate and there is no exact match. In other words, QBIC techniques
serve as “information filters” and simply reduce the search for the user who will ultimately discard
false retrievals or visually browse the returned images and select the ones he wants. We limit
“content” to parameters that are feasible to compute given the state of the art in computer vision
today, such as color distribution, shape, texture, layout etc. We do not, for the moment, attempt
to automatically derive more complex semantic descriptions such as “dog”, “cat”, “house” etc.
which are currently beyond the reach of pattern-recognition technology. These descriptors, in our
opinion, should be entered by the user, if necessary.

Visual interaction is key to the QBIC interface, allowing the user to use visual query and
visual evaluation and refinement, and to decide what to discard and what to keep. We also contrast
QBIC technology with typical machine vision applications. There are several important differences.
In QBIC applications, through the interaction with the system, the user is offered the possibility
of a virtually unlimited set of unanticipated queries rather than having a system automatically
classify and recognize samples into a small number of predefined classes (part is good/bad, this
is a chair etc). It is also important to note that in QBIC applications the main output is a
set of images with desired properties that the user will use for subsequent application (inclusion in
multimedia story etc.), rather than a symbolic decision as in typical pattern recognition applications
where the system is producing a limited set of symbolic outputs that is predefined and hardcoded.

Possible applications of QBIC technology include: “edutainment”, journalism, museum cataloging,



document processing, medical, intelligence and military, etc. We believe the QBIC technology
should be a part of future multimedia databases that will contain text, sound, image and video.
A major challenge in this approach is to determine a set of attributes or features that (a)
describe the contents of an image; (b) admit some similarity measure or metric; and (c¢) can form the
basis of an index into the image collection. Many features are available from the fields of machine
vision and image analysis describing image content — for example, a color histogram describing the
set of colors in an image. These feature sets are typically k-element feature vectors. However, there
is a mismatch between the characteristics of these vectors and the multi-key indexing tools: the
dimensionality £ is often large, leading most indexing methods to “exponential explosions”; even
worse, the distance function is not always Fuclidean, in which case the multi-key indexing methods

(R-trees, grid files etc) can not be applied at all. In this paper, we:
1. describe a system that uses a set of features to describe color, texture, and shape;

2. show that they are an effective feature set in that they allow the user to specify and retrieve

a desired image for a range of content based image queries; and,

3. propose techniques to transform the feature vectors, so that they are amenable to indexing
by the available database tools. These techniques are applicable to large classes of feature

vectors.

The resulting system achieves high speed-ups compared to straightforward methods.

Section 2 presents a survey of relevant efforts. Section 3 describes the operational character-
istics of the environment and our feature and similarity functions. Section 4 presents results with
normalized recall and precision, showing that the derived features indeed capture the similarity
perceived by humans. Section 5 presents the mathematical background that permits multi-key
indexing methods to be used here. Section 6 presents response time experiments, that illustrate

the speed-up of our approach, that uses indexing. Section 7 presents the conclusions.

2 Previous Work

This section reviews the past efforts in the areas of image query by content and multi-dimensional
indexing.
2.1 Query by image content

Querying image databases by their image content is an active area of research. In terms of features

to use, it benefits from the large body of work in machine vision on feature extraction and similarity



measures, e.g., see [11], [3], [6].

In terms of methods and systems for image retrieval, examples of recent work include [47]
and [48], which consider methods to retrieve images of line drawings and engineering diagrams;
[7, 8, 27, 28], which assume known objects have been identified in images, and define and use 2D-
and 2D-C strings to perform image retrieval based on the relative position of combinations of these
known objects; [19], which presents a method for “query by sketch” in which a rough user-sketch
of overall scene layout is used as the basis of a query; [22, 24, 25, 9, 30, 17, 26], which give methods
for retrieving images based on the shape of objects they contain (or related methods to index into
a database of shape models); and [5, 45, 21], which present retrieval methods based on the colors
in a scene.

In many cases, an article emphasizes the vision aspects of the problem (e.g. [19, 22, 5, 21]),
or the indexing issues (e.g., [24]). However, in [36, 1, 44], it was observed that there needs to be
increased communication between the vision and the database communities for such problems, and

it is exactly this gap that this paper tries to bridge.

2.2 Multi-dimensional indexing

Within the database community, approximate matching has been attracting increasing interest.
Shasha and Wang [43] proposed an indexing method that uses the triangular inequality and some
precomputed distances to prune the search. Aurenhammer [2] surveys recent research on Voronoi
diagrams, along with their use for nearest neighbor queries. Jagadish [24] suggested using a few
minimum bounding rectangles to extract features from shapes and subsequently managing the
resulting vectors using a spatial access method, like k-d-B-trees, grid files, etc. A major contribution
of [24] is that, by mapping items into feature vectors, it allows us to tap the vast literature on multi-
key/spatial access methods. To do this, it makes two assumptions: (a) the “distance” between
two objects corresponds to the Euclidean distance of the points in feature space, and (b) the
dimensionality of the feature space is reasonably low. As described below, we consider cases where
either or both assumptions do not hold.

Apart from these problems, which we show how to solve, our application needs a multidimen-
sional indexing method that works for large, disk-based databases. The prevailing methods form
three classes: (a) R*-trees [4] and the rest of the R-tree family [18, 23]; (b) linear quadtrees [41];
and (c) grid-files [35].

Most multidimensional indexing methods explode exponentially with the dimensionality,
eventually reducing to sequential scanning. For linear quadtrees, the effort is proportional to the

hypersurface of the query region [20]; the hypersurface grows exponentially with the dimensionality.



Grid files face similar problems, since they require a directory that grows exponentially with the
dimensionality. The R-tree based methods seem to be most robust for higher dimensions, provided
that the fanout of the R-tree nodes remains > 2. Experiments [37] indicate that R-trees work well
for at least 20 dimensions. The most successful variant is the R*-tree [4], typically being faster
than the other R-tree variants. Thus, in QBIC, when we explore the impact of multidimensional

indexing, we use the R*-tree as an underlying indexing method.

3 Requirements and proposed solution

3.1 Characteristics of Image and Multimedia databases

Crucial characteristics of image, and in general, multimedia databases (e.g., see [33] [15]), when

compared to traditional, relational databases, include:

1. The size of each data item is large (color images are of the order of a few MBytes; one hour
of MPEG compressed VCR quality video is on the order of 1 GByte). This imposes severe
requirements not only on storage, but also on data delivery (final query results, browsing

etc.).

2. Storage and delivery of video data requires guaranteed continuous delivery in order to avoid

jitter, which in turn significantly influences the design of the whole system

3. Content and similarity based retrieval may be required in addition to retrieval by text. The
number of features can be large (order of 100). The distance function is not necessarily

Euclidean, often involving “cross-talk” between features.

4. User and query interface should be visual as much as possible (i.e. allow the user to select
color, shape and texture by graphical means) and also enable visual relevance feedback and

user-guided navigation.
5. Query response time should be fast since it is typically interactive.

6. Updates are rare. The database often has an archival (ie., “append only”) nature, and it may

even be static (eg., a collection of images, distributed on CD-ROM).

These characteristics suggest that, for many applications, we can pre-compute and store the fea-
tures. Also, on static databases, we can fine-tune our indexing method, without worrying about
insertions and reorganization.

We restricted ourselves to image databases; for our application we needed two new datatypes:

“images” (= “scenes”) and “objects”. A scene is a (color) image, and an object is a part of a scene,



Property Query on:

image | object
color Vv O V
shape Vv O

texture Vv Vv

Table 1: Classification of Queries in QBIC.“\/”:“supported”; O: “experiments presented”

e.g., a person, in a beach scene. FEach scene has 0 or more objects. Objects can be identified
manually or semi-automatically. In QBIC, the user can draw an initial coarse outline around an

object which the system uses to “shrink-wrap” a final outline around the object boundaries [34].

3.2 Types of Queries

Given that semantic features are outside the capability of current machine vision technology, we
selected the properties of color, texture, and shape, because they have broad, intuitive applicability.
For either a scene or an object, the user may ask a query on any of the above properties, or a boolean
combination of the above. All queries are “approximate” (or “similarity” or “fuzzy”) queries.

Table 1 shows the classification of queries. A / indicates that QBIC can presently handle
them; a O indicates that we present experiments with these types of queries in this paper.

As an example, if a user is interested in retrieving a beach scene, he/she can form the query
as one on the color distribution (e.g. 35% white, 65% blue area coverage) and textures (presence
of sand texture). QBIC will retrieve images with these properties. The results will include beach
scenes, as well as false retrievals (images that happened to have similar color distribution). It is
our experience that this does not represent a problem for the user, since the human visual system
is excellent in quickly focusing on items of interest and discarding unwanted patterns, as long as
there are not too many of them.

In addition to the above types of queries, QBIC supports two ways of specifying a query:

e a “direct query”, where the user specifies the desired color/shape/texture directly, eg., by
picking colors from a palette on the screen (termed “multi-color picker”), or drawing a sketch

with the mouse.

e a “query by example”, closely related to the concept of relevance feedback [40]: that is, the

user can choose one of the displayed images, and ask for images similar to the selected one.

Notice that the two modes of operation may be used interchangeably within the same session.



3.3 Features and Distance Functions

We describe the feature sets we use and the associated distance functions that try to capture the
similarity that a human perceives. Detailed presentation and justification of the features is in [34]
and [13].

Color features: One of the methods we used is to compute a K-element color histogram
for each object and scene. Conceptually, K can be as high as 16 x 10° colors, with each color
being denoted by a point in a 3-dimensional color space. In practice, we cluster similar colors
together using an agglomerative clustering technique [11], and choose one representative color for
each bucket (= “color bin”). In our experiments, we concentrated on using A = 256 and K = 64
color clusters. Fach component in the color histogram is the percentage of pixels that are most
similar to that color. Once these histograms are computed, there are a variety of ways in which to
compute similarity between a pair of color histograms. In one method, the distance between two
histograms (K X 1 vectors) & and § is given by

K K

diy;o(T,7) = (T = ) A(F - §) = ZZ agj(zi — yi)(a; — y;) (1)

where the superscript ¢ indicates matrix transposition, and the matrix A has entries a;; which
describe the similarity between color i and color j. This formulation was proposed in [21], and
results in desirable performance. For example, with this measure we can correctly compute that
orange images are similar to red images, and that a half-red /half-blue image is quite different from
an all-purple one. We have also developed several completely new methods [13] for calculating the
similarity between color histograms. In the best of these, the user has the flexibility to not only
compare two complete histograms, but can also specify partial histograms in queries such as “show
me all images with 20% red, where I don’t care at all about the rest of the picture”.

Notice that the Euclidean distance is a special case of a distance of Equation 1 if the matrix
A is the identity matrix (/). The main difference between a Euclidean distance and the distance
of (Equation 1) is that the latter takes into account the “cross-talk” between two colors (such
as orange and red). This phenomenon does not appear in databases. All the multi-key indexing
methods make the implicit assumption that such cross-talk does not exist. Thus, these methods
can not be applied.

Shape features: One of the most challenging aspects to content based image retrieval is
retrieval by shape. Shape similarity has proven to be a difficult problem [32, 31] in model based
vision applications and the problem remains difficult in content based image retrieval. Currently,
we use as features the area, circularity, eccentricity, major axis orientation and a set of algebraic

moment invariants for a total of 20 features. All shapes are assumed to be non-occluded planar



shapes allowing for each shape to be represented as a binary image. The distance between two
shape vectors is the (weighted) Euclidean distance where the weights reflect the importance of each
feature.

Texture features: Our texture features are modifications of the coarseness, contrast, and
directionality features proposed in [46]. See [12] for more details on our implementation of texture
features, including descriptions of how we improved the robustness and efficiency of these measures.
The distance function is the (weighted) Euclidean distance in the three dimensional texture space.
Since indexing points in the 3-dimensional texture space is straightforward, we do not discuss

texture further.

4 Effectiveness of QBIC

Any system that deals with large number of complex patters that are formed by real signals, with
their noise and inherent variability, needs to be extensively tested using carefully designed large scale
experiments. In this section we discuss the experimental evaluation of the retrieval effectiveness of
QBIC.

Information retrieval systems based on exact match may be evaluated using precision and
recall statistics [40]. For a given query, let T' the total number of relevant items available, R, the
number of relevant items retrieved, and T, the total number of retrieved items. Then precision is
defined as R,/T,, and recall as R,/T. These two parameters are interdependent and one can not
be improved without sacrificing the other.

In a system such as QBIC that performs similarity retrieval as opposed to exact match,
normalized precision and recall have been suggested [40]. These reflect the positions in which the
set of relevant items appear in the retrieval sequence (ordered by some similarity measure). For
example, normalized recall measures how close to the top of the list of retrieved items the set of
relevant items appears, compared to an ideal retrieval in which the T relevant items appear in the
first T positions. We used a variation of these measures (described below) to assess the performance
of QBIC.

For the experiments, we selected ¢ test images/shapes; the experimenters decided beforehand
which items are relevant for each test case; and issued the query, displaying the best 20 matches.

For each query, we calculated the following measures:
o AVRR is the average rank of all relevant, displayed items (the first position is the 0-th).

o JAVRR is the ideal average rank. It is the maximum when all relevant images are retrieved

on the top: JAVRR=(0+14...+ (7' —1))/T.



Measure || Colors | Shapes
size of db 1000 | 295x3
# of queries T 10 6
IAVRR 2.8 4.2
AVRR 5.4 8.6

Table 2: Results of experiments on effectiveness

For each experiment, we report the average of the above measures over the ¢ queries. Notice that
the ratio of AVRR to IAVRR gives a measure of the effectiveness of our retrievals. We computed

these statistics for the following queries:
o retrieval of full images by their colors by specifying a set of colors and

o retrieval of objects by their shape by drawing an approximate shape.

4.1 Color Queries using Histograms

The test database consisted of approximately 1000 full color scenes. Our multicolor color picker
contains 64 basic colors. A query is formed by selecting up to five colors, together with their relative
percentage, which is normalized to add to 100%. The two experimenters selected ¢=10 test images.

The left column of Table 2 shows the measures, averaged over the ¢=10 tests. Notice how
close the AVRR=5.4 is to the ideal: TAVRR=2.8. This implies that the average relevant image
appears in the 6-th position; given that we displayed 20 images, most of the relevant images were
displayed, and were also in good ranks. In fact, only 3 relevant images were missed (= not displayed
in the top 20) out of the total 72 relevant images for the 10 test cases. No test images were ever
missed; the average rank of the test images was 1.1, which means that the test image would typically
appear in the 2nd place.

In conclusion, the color features and distance function were very effective. In addition, the
multicolor color picker interface seemed quite intuitive and easy to teach to the novice. We also
observed that it was quite easy for the user to quickly discard the non-relevant images among the
top 20. This points out that image information retrieval systems should be optimized for the human
perceptual system and that they should benefit from its power to quickly scan the displayed set

and easily reject non-relevant images.



4.2 Shape Queries

We tested our moment-based shape retrieval methods. For this test, we assumed size and orientation
invariance (i.e. objects are to be retrieved if they are of similar shape even though rotated or of
a different size). The test database consisted of 259 airplane silhouettes that contained various
airplane types in three main views, front, top and side. FEach view was considered a separate
shape.

In each of 6 experiments, the user sketched a silhouette of an airplane, without many fine
details (fuel reservoirs etc), concentrating on the main features such as the angle of the wings and
the general shape. Thus, unlike the color experiment, there was test image since the retrieval was
to match the user drawn shape. The sketching was done using a polygon drawing routine. We
displayed the 20 top ranked retrievals and recorded the same measures as for the color experiment.
Results are given in the right column in Table 2. Again, the average AVRR was well below the
number of displayed images (8.6 vs. 20), indicating that we typically retrieve the majority of
the relevant images within the displayed set. Over all experiments, there were 64 images judged
relevant, and 11 total misses.

The shape retrieval performed well. It was not capable of exact distinction among finer details
(i.e. presence of payload on the wings etc.) but acted as a filter to reduce the set of images returned

to the user.

5 Facilitating indexing

The methods we are describing for image and object retrieval require that every item (object or
image) be mapped to a feature vector. For efficiency, these feature vectors are precomputed and
stored. For a small size database, sequential scanning will be fast. However, as the database grows,
sequential scanning’s known linear scale-up becomes prohibitively slow. The solution, as in [24],
is to treat each feature vector as a point in n-d space, and employ a multi-dimensional indexing
method.

In our application, we encountered two obstacles:

1. The quadratic nature of the distance function: The distance function in the feature space
is not necessarily (weighted) Euclidean; there is “cross-talk” among the features, resulting
in a distance function, as the one for color histograms (eq. 1), that is a full quadratic form
involving all cross terms. Not only is such a function much more expensive to compute than a

FEuclidean (or any L,) distance, it also renders all the multi-key indexing methods inapplicable.
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2. The “dimensionality curse”™ n may be large (e.g.. 64, or 256 for color features). Most

multi-dimensional indexing methods require space and/or time exponential on n.

We propose solutions to both problems for our application. The major idea behind both
solutions is to use a “signature” approach, that is, to create a filter that will allow some false hits,
but no false dismissals. This philosophy has been successfully used in several environments (text
retrieval [14], differential files [42], hash-join algorithms, spelling checking [29], etc.).

Thus, in both the above problems, our goal is to find a mapping of the feature vector X into
a vector X’ = f(X), where X’ is a vector in a more suitable space, with a distance function D’()

which will underestimate the actual distance:
D'(X',Y") < D(X,Y) (2)

An operation that has such a property when using Euclidean distance is, for example, the projection
of 3-d points on the z-y plane (i.e., truncation of the z co-ordinate/feature). The reason that we
want Equation 2 to hold is to guarantee that a range query will not miss any actual hit. For
example, the query “retrieve all feature vectors X within tolerance € from the query vector Cj” will
first operate on the lower-dimensional space, retrieving all X’ such that D’()Z’, Cj’) <¢. Thus, if a
vector X qualifies (D()z, Cj) <€), then, by Equation 2, is guaranteed to qualify for filtering step
D’()Z’, Cj’) < (D()?, Cj) < €. We present two different forms of the function f. The first, which is
a stronger result, is applicable to cases of high dimensional data that represent distributions over
a lower dimensional space. The second is a more common dimensionality reduction technique.

We illustrate the first, using the color features and a new theorem ( “Quadratic Distance
Bounding” ) described in the next subsection. For the second problem, we propose the use of
distance-preserving transformations, such as the Karhunen Loeve (KI), Discrete Fourier (DFT),
or Discrete Cosine (DCT) transforms [38] which map n-d feature vectors into n-d vectors. The
gain is that the transformed vectors will have most of the “information” (or “energy”) in the first
few coeflicients. Thus, we use the first few coeflicients for indexing resulting in a lower dimensional
index, sacrificing a small number of false hits.

In the next two subsections we provide the the mathematical foundation for the solutions.

Following that, we show experimental results that demonstrate the efficiency gains.

5.1 Efficient Bounding of Color Distance Function

The key to efficient retrieval of images based on their full color histogram is an efficient approxi-
mation to dp;s, the histogram color distance defined in Equation 1. We do this by lower bounding

—
b

the histogram color distance with a multiple of d,,,(Z, ), the distance between the average color

11



of two items. For example, the average color vector for a outdoor scene with 50% blue sky and 50%
green grass would be, as an RGB vector, (0,50,50). That is, we establish that dp;s; > kdgyg. As will
be clear, the d,,, distance function is much cheaper to compute, both in terms of CPU cycles and
in terms of disk accesses. Most importantly, though, the d,,, function avoids the “cross-talk” of
the features, which otherwise forbids the use of all the known multi-key indexing methods. This
allows us to use d,,, as a means for filtering the database. For example, if we want to select all
vectors for which dp;s; < €, all we need to do is select all the vectors for which kdy,y < e. If we do
this we are guaranteed to have selected all the vectors we wanted (for which dp;s < €), plus some
additional false hits. A second pass on this selected set can separate out the false hits.

The average color distance dg,, is defined on a different (and significantly smaller) color
feature than the color histogram. This feature, the average color  of an image, should be pre-
computed and stored in the database, even though it is computable from the color histogram (and
the definitions of the color bins). Without loss of generality, say that colors are described by the
triplet (R,G,B) (for ‘R’ed, ‘G’reen, ‘B’lue), although different color spaces (such as Lab or YUV)
result in a closer modeling of human judgment of color similarity. The average color of an image

T = (Ravg, Gavg, Bavg)', 1s defined in the obvious way, with

N
Ravg = (1/N)Z_:R(p), (3)
Gavg = (1/N)Z_:G(p), (4)
N
Buwy = (1/N)Z_:B(p). (5)

Here we say that there are N pixels in the image, and that R(p), G(p), and B(p) are the red, green
and blue components (intensities, typically in the range 0-255) respectively of the p'* pixel. Now,
given the average colors  and y of two images, we define d,,, as the simple Fuclidean distance

between the 3-dimensional average color vectors,
davg(7:9) = (2 = 9)'(z = 9) (6)

Before stating the main theorem we need to prove our bound, we establish a few definitions.

We define a K x K matrix W in terms of the representative colors of each of the K color histogram

bins. For example, if we say that bin ¢ of the histogram is defined by the color (R;, G, B;), then
we define W so that

wij = (R, Gi. Bi)'(R;, G, B) (7)

12



We define an (K — 1) x (K — 1) matrix W as a function of the matrix W, with
Wij = Wij — WiK — WKj + WKK- (8)

A (K —1) x (K — 1) matrix A is defined similarly in terms of the color similarity matrix A.

Given these definitions, we state our theorem, the proof of which we leave to an appendix.

Theorem 5.1 (QDB- “Quadratic Distance Bounding” ) With dy;s; and dg,, defined as above,

and with A positive semi-definite, we know that

dhist 2 Mad,

- avyg?

where Ay is the minimum eigenvalue of the generalized eigenvalue problem

Az = 2W3.
In our application, A is in fact positive semi-definite, so the theorem can be applied to prove the
bound we need. Notice that the constant A\; depends only on the way we have created the K colors.
The net result is that, given a color query, our retrieval proceeds by first filtering the set of images
based on their average (R, G, B) color, then doing a final, more accurate matching using their full

k-element histogram. The resulting speedup is discussed in Section 6.

5.2 Distance Preserving Transforms

Our shape similarity measure is the weighted Fuclidean distance between the corresponding fea-
tures. Using matrix notation this can be represented as (7 — ¢)(Z — ¢), where & and ¢ are n x 1
feature vectors corresponding to two objects, a data object and a query object, respectively. If the
data and the query features are transformed via an orthonormal transformation A, their distance
will be preserved. This is easily seen since A is orthonormal (AA" = I), and the distance can be
computed as in FEquation 9.

(AF — AQY(AF — AD) = (A(F — D) A(F - AQ) = (¥ — P A'AF - AP = S (i — g% (9)

i

We seek a method that will under-estimate this distance using fewer dimensions, and our method
is to select a subset of the transformed feature set. Let &@;& be the i*" transformed feature, where
@, is the i*" row of A. Here we will be setting @; to 0 for the n — m least important entries. The

sum in Equation 9 can be broken into two parts, so that

Sl— g - (S -pr+ S @@ - 2] =0 (10)
=1 =1 i=m+1

13



By simple rearrangement of Equation 10, we can see that the error introduced by computing the

distance on a subset of the transformed features (setting the last @; to zero) is given by

=3 o) - S @F -0 = Y (@(F - D> 0. (11)
=1 =1 i=m+1

Note that by Equation 11, we know that the truncated distance will always under-estimate
the distance, i.e., 6 > 0. It is exactly this property that guarantees that the method will never miss
a valid match.

The suitable transformations form two large families:

e Data dependent transforms, like the Karhunen Loeve transform, which need a sample of the

data to perform statistical analysis for the determination of the transformation matrix A.

¢ Data independent transforms, such as feature sub-selection, Discrete Cosine (DCT), Harr,

Fourier, or wavelet transform, where the transformation matrix A is determined a-priori.

The trade-offs between the two alternatives are as follows: The data-dependent transforms
can be fine-tuned to the specific data set, and therefore they can achieve better performance,
concentrating the energy into fewer features in the feature vector. Their drawback is that, if the
data set evolves over time, its statistical characteristics may change, degrading the effectiveness of
the result. In this case, a recomputation of a better A may be required. Given that a reorganization
will be expensive, the data-dependent methods are recommended in the following two cases: (a) if
the database is static (eg., a database published on CD-ROM, or a database with archival data),
(b) if the sample that is used to determine the A matrix is representative of the full database.

Using least squares error minimization on é in Equation 10 results in the statistically optimal
data dependent transformation, the Karhunen Loeve transform. The results of this minimization
is that A consists of the eigenvectors of the covariance matrix of the data. The rows of A are
chosen so that the non-zero entries correspond to the eigenvectors with the largest eigenvalues of
the covariance matrix. For a detailed explanation see [16]. To achieve dimensionality reduction,
a common heuristic is to select the eigenvalues/vectors that contain between 60-80% of the infor-
mation. If the eigenvalues A; are sorted in decreasing order A; > A;4q, this can be determined by

finding a m such that
0.60 < Y Ai/tr(X) < 0.80. (12)
=0

where ¥ is the covariance matrix and ¢r is the trace (sum of the diagonal elements).
For data-independent transforms, like the Discrete Fourier Transform (DFT'), the problem of

updating the transformation matrix A disappears. There is another problem, though: we want to
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ensure that the first few coefficients of the transform will carry most of the information. Fortunately,
many transforms like the Discrete Cosine Transform (DCT) will perform as well as the Karhunen
Loeve if the data follows specific statistical models. For example, the DCT widely used in image
compression is very good at decorrelating data and would be an excellent choice if the features are
highly correlated. If the statistical properties of the data are well understood, a data-independent

transform in many common situations will obtain near optimal results.

6 Efficiency experiments

We ran simulations to test the effectiveness of the described methods. Specifically, we ran ex-
periments on color, using the bounding theorem, and on shapes, using the Karhunen Loeve (KIL)

transform for dimensionality reduction.

6.1 Experiments on Fast Color Matching

We compared the relative performance (in terms of CPU time and disk accesses) between the two
methods: (a) simple sequential evaluation of dj,;, for all database vectors, (referred to by “naive”),
and (b) filtering using d,,, followed by evaluation of dj;s only on those records that pass through
the filter (referred to by “filtered”). In our evaluations we did not implement indexing methods
(such as R-trees) so that we may focus on the gains from the filtering step.

In evaluating the performance of the methods, we determined the CPU times required by
the methods by performing simulations on an actual database of color image histograms. Our
database consisted of 924 assorted natural images, and the sample queries involved matching each
record in the database against the remaining records. Experiments were performed on a standard
workstation (IBM RS/6000 model 530 — approximately 30 MIPs). In these experiments, we used
K =256 element histograms.

First, we compare the selectivity of the filtering step. Results shown are the average perfor-
mance over all experiments. In the ideal case, the filtering step would filter out only exactly those
records for which dp;s was in the desired range. We are guaranteed that we will include all records
for which this is true, but we also will retrieve some “false hits”. Figure 1 shows the extent of the
false hits for our test database. We can see that if we set our tolerance so that we retrieve the
best 5% (ie., 50 best matches) of the database (in terms of dp;s ), our “filtering step” will in fact
retrieve approximately 30% of the database as candidates. This results in considerable savings,
since the cost of doing even a few complete dp;s calculations is very large compared with the cost

of filtering applied to the entire database. Thus the filtering step selects a substantially reduced
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subset of the records, particularly in the typical case where we want to retrieve a very small subset

of the database.
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Fraction retrieved using d_hist

Figure 1: Amount of overshoot from color distance filtering

We now evaluate the relative cost of direct sequential evaluation of dp;s on all vectors as
compared with filtering followed by evaluation of dp;s only on the selected subset of the original
database. To avoid problems with buffering and pre-fetching, we estimate the number of disk

accesses and subsequent time by assuming:
o Sequential disk accessing of a page of 1K bytes of data is 2ms
¢ Random disk accessing of a page of 1K bytes of data is 8ms

e The CPU time required to compute dg,, is negligible compared to the time required to

compute dpist.

o All disk accesses required for calculating dp;s: in the filtering method are equivalent to a
random access of an entire 1K byte page, regardless of the actual size of the histogram
feature vectors. It was assumed that one would only return a single histogram vector per

random disk access, although one would likely do better than this.

Results are shown in Figure 2. Given these worst case assumptions, we note that when we set our
tolerances to retrieve a small fraction of the database such as 5%, the proposed filtering method,
although it includes no special indexing methods, clearly outperforms the naive sequential appli-
cation of the dj;s distance to all vectors in the database. Notice further that the naive method is

clearly CPU bound, which is almost 80% of the total time.
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Figure 2: Time spent with sequential retrieval vs. filtered retrieval

6.2 Experiments on Fast Shape Indexing

As we saw, the proposed solution to high-dimensional feature vectors with a Fuclidean distance
comparison function is to use an orthogonal transform; the optimal one for the data-dependent case
being the KI. transform. The result of the KL transform is that eventually we have new features,
sorted in “strength” order. Thus, we can index on the first few of the new features. The questions

that naturally arise are
e How many of the new features we should keep
e What is the performance gain of the method
¢ How does the method scale up for larger databases.

Simulations were run using 20 affine invariant shape features to answer the above questions.
In both experiments, the page size for the R*-tree was P=1024 bytes. Two databases were utilized.
The first is the current QBIC object database with 1785 objects and is referred to as “Small” in the
plots. The second database has 10634 shapes and was generated by computing the shape features
on randomly thresholded luminance images of color photographs obtained from a commercially
available CD-ROM. We refer to this database as “Large” in the plots.

In order to determine the gain from applying a orthogonal transformation, we took both
databases, truncated the features to m dimensions, and inserted them into an m-dimensional R*-
tree. Thus we are randomly throwing away all but m features. Similarly, we KI transformed

the features, ordered the transformed features in eigenvalue order, truncated the features to m
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dimensions and inserted them into an m-dimensional R*-tree. We then performed range queries
against the databases. For the small database the queries consisted of the database itself. For the
large database the queries were 1041 random records in the database. Since the CPU time was
negligible, compared to the I/O time we present number of disk accesses in our graphs. Figure 3
shows the number of disk accesses as a function of m, the number of retained features. This number
includes both the accesses for the R*-tree pages plus the random accesses to do the post processing
to eliminate false hits. The tolerance € was set to 200, resulting in an average of 22 hits/query for
the large database and 2 hits/query for the small database.

The conclusions are:

e The optimal m is ~2. This is in good agreement with the heuristic presented (Eq. 12). In
both databases, 75% of the energy is in the first two components. For larger tolerances the

optimal is not as well defined, but generally there is a flat region for m between 2 and 8.

o Transforming the data achieves significant savings over non-transformed truncation. In, fact
performance is better even if we miss the optimal m, i.e. we are better off with a 12-m
KL index than with any non-transformed index. Note also that the absolute performance is

better on an optimally created database than naively created database 6 times smaller.
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Figure 3: Average Disk 1/O’s per query, vs. dimensions kept m; e=200
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The second experiment determines how our method scales with database size. In this exper-
iment we took a random subset of the “Large” database. Again we inserted the truncated features
into an m-dimensional R*-tree and the KL transformed version of the features into another m-
dimensional R*-tree. 1041 range queries were made with tolerance e=200. Figure 4 plots the 1/0O

operations for the naive approach and the KL approach for several values of m.
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Figure 4: Average Saved Disk I/O’s per query, vs. database size N

As shown in the graph, by KL transforming the data we gain a linear advantage in the number
of I/O’s per query. Also, as m increases the slope of our linear advantage decreases. This can be
explained by the fact that as more features are used the index becomes larger and more expensive

to traverse while there is a diminishing amount of information in the remaining features.

7 Conclusions

Large online image collections are becoming more and more common, and novel methods to manage,
organize, and retrieve images from these collections need to be developed. The goal of our QBIC
project was to provide effective and efficient query by image content on very large image database.

The focus of this paper is the design and implementation of such a system, coupling a good
set of features and similarity functions from machine vision, with fast indexing methods from the

database area. The major contribution is the introduction of techniques to make machine vision and
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database indexing tools work together. The result of this joint effort is an operational prototype
that is both effective and efficient: the features and the similarity functions exhibit very good
normalized recall, and the response time is much better than straightforward alternatives and is
expected to scale-up well for even larger databases, thanks to state-of-the-art multikey indexing.

For our application, we have identified two stumbling blocks that real feature and distance
functions often present: (a) the distance function involves cross talk among features and therefore
is not Euclidean, and (b) the dimensionality of the feature space is high. We proposed solutions
to each of these by using transformations that introduce false hits, but no false dismissals. This
allows us to use fast multidimensional indexing methods, by paying a small post-processing cost to
eliminate the false hits.

From a practical point of view, our experiments on real databases showed the following:

o for the Karhunen Loeve (KL) transform, a good cut-off value m for practical cases may be
very low — in our case it was 2. That is, the first 2 features of the KL transform are enough

for indexing purposes.

e by using the “Quadratic Distance Bounding” theorem, we replaced a distance function which
was quadratic in the feature dimension with a constant time filtering function, followed by se-
lective application of the original distance function. For large color histograms, this technique

drops the CPU time, making the process I/O bound again.

Acknowledgments: We would like to thank Jim Hafner and Harpreet Sawhney for their
help with the proof of the DB theorem.

Appendix — Proof of Color Distance Theorem

Define image histogram vectors:

F o= (v1,..,2n), 0<a; <1, > ;=1 (13)
7 = (emun), 0<y <1, Y yi=1 (14)
7= @-§ -1<%<1, ) %4=0, (15)

K3

color values (for example, A=Red, B=Green, C=Blue):
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Vi = | By By By
Cp Oy Cn
= (517 527 ) CN)7
average color distance:
Tag = VT
gjavg = Vtgj
dng = (Zavg = Jovg) (Zavg — Favg)
= (V'2)4(v*'?)
= Fvviz
and histogram distance:
a;; = similarity between color 7 and color j
., = A7

To prove the bound, first change the N x N problem to an (N — 1) x (N — 1) problem,

removing the constraint that >° z; = 0. Define Z as the truncated version of Z,

ZN-1

and define Ay_q,d.n, Y, and I appropriately so that you can expand 7 AZ as:

N

AN_1  dun Z

= FAn_ 15— a1tz - a2+ Flann]'E

FAZ = [ ay |

AN_1  dun ]

_t
AN aANN

= |# 2T

= 3 [AN—I — 6*th — T(,_il]f\f* + aNfot] Z.
Now we can define the (N — 1) x (N — 1) matrix A such that A% = #' A2, with

A= [AN—I — 6*th — f(,_il]f\f* + aNNTTt] ,
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and
Gij = aij — ;N — aNj + aNN- (32)

Now, if we let W = V'V, and define W analogously to A, we have

diy = ZAZ (33)
= Az (34)

2 tz

dZ,, = ZVV'z (35)
= 7wz (36)
= W3, (37)

and we are ready for the following theorem:

Theorem 7.2 With dy;se and dy,g defined as above, and with A positive semi-definite, we know
that
diise > Midy

avg?
where Ay is the minimum eigenvalue of the generalized eigenvalue problem
Az = 2W3.
Proof: We will show that 3 A% > A\ 5W 3, (a similar relation is posed as exercise 22.1in
[39]). For the sake of simplicity, we will assume A is symmetric (with real eigenvalues),

since a non-symmetric A can be decomposed to a symmetric part and an asymmetric

part, with the asymmetric part contributing nothing to the quadratic form.

For any €' > 0, we set up the constrained minimization problem
min A3,
55t Wi=C
Use Langrange multipliers to convert this to the unconstrained minimization problem
min 2 Az — ) (2'Wz - ().
z

Setting the derivatives equal to zero yields

Az = \W3,
so a necessary condition for minimizing the function is that A and Z be generalized
eigenvalues and eigenvectors for the problem A% = AWZ. Now from this necessary
condition we can see that when the function is minimized
FA: = MWz
= AC,



so it is clear that to minimize 'A% we must choose the smallest of the candidate \’s.

In other words, we must choose A = Ay, the smallest eigenvalue, which tells us that

min A2 = A\ C.
23 Wi=C

Now, for any 2, 21W % takes on some value (> 0), and when that value is strictly greater

than 0 we use this value as our ', and by the above we know that
FAZ > N FWE

When W2 = 0, we rely on A being positive semi-definite and the inequality still holds.
Consequently,
d2... > \d?

= avg?

where \; is the smallest eigenvalue of the generalized eigenvalue problem A% = AW 3.
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