
Towards a Distributed
Web Search Engine

Ricardo Baeza-Yates
 Yahoo! Research
Barcelona, Spain

Joint work with Barla Cambazoglu, Aristides Gionis, Flavio Junqueira,
Mauricio Marín, Vanessa Murdock (Yahoo! Research)

and many other people

4

Web Search

Context

Web

5

Web Search

•  This is one of the most complex data
engineering challenges today:
– Distributed in nature
– Large volume of data
– Highly concurrent service
– Users expect very good & fast answers

•  Current solution: Replicated centralized system

6

WR Logical Architecture

Crawlers

Web

A Typical Web Search Engine
•  Caching

–  result cache
–  posting list cache
–  document cache

•  Replication

–  multiple clusters
–  improve throughput

•  Parallel query processing
–  partitioned index

•  document-based
•  term-based

–  Online query processing

Search Engine Architectures

•  Architectures differ in
–  number of data centers
–  assignment of users to data centers
–  assignment of index to data centers

10

System Size
•  20 billion Web pages implies at least 100Tb of text
•  The index in RAM implies at least a cluster of 10,000 PCs

•  Assume we can answer 1,000 queries/sec

•  350 million queries a day imply 4,000 queries/sec

•  Decide that the peak load plus a fault tolerance margin is 3

•  This implies a replication factor of 12 giving 120,000 PCs

•  Total deployment cost of over 100 million US$ plus
maintenance cost

•  In 201x, being conservative, we would need over 1 million
computers!

11

Questions

•  Should we use a centralized system?
•  Can we have a (cheaper) distributed search

system in spite of network latency?

•  Preliminary answer: Yes
•  Solutions: caching, new ways of partitioning

the index, exploit locality when processing
queries, prediction mechanisms, etc.

12

Advantages
•  Distribution decreases replication, crawling, and

indexing and hence the cost per query
•  We can exploit high concurrency and locality of

queries
•  We could also exploit the network topology
•  Main design problems:

–  Depends upon many external factors that are
seldom independent

–  One poor design choice can affect performance
or/and costs

13

Challenges

• Must return high quality results
 (handle quality diversity and fight spam)

• Must be fast (fraction of a second)
• Must have high capacity
• Must be dependable

 (reliability, availability, safety and security)
• Must be scalable

14

Crawling

•  Index depends on good crawling
– Quality, quantity, freshness

•  Crawling is a scheduling problem
– NP hard

•  Difficult to optimize and to evaluate
•  Distributed crawling:

– Closer to data, less network usage and latency

Too Many Factors

•  Quality metrics
•  External factors
•  Performance
•  Implementation

issues
•  Politeness

•  Objective: See the impact of higher page download rates on search quality

•  Random sample of 102 million pages partitioned into five different

geographical regions
–  location of Web servers
–  page content

•  Query sets from the same five regions

•  Ground-truth: clicks obtained from a commercial search engine

•  Ranking: a linear combination of a BM25 variant and a link analysis metric

•  Search relevance: average reciprocal rank

Impact of Distributed Web Crawling
on Relevance [Cambazoglu et al, SIGIR 2009]

•  Distributed crawling
simulator with varying
download rates

–  distributed: 48 KB/s
–  centralized:

•  30.9 KB/s (US)
•  27.6 KB/s (Spain)
•  23.5 KB/s (Brazil)
•  18.5 KB/s (Turkey)

•  Checkpoint i: the point
where the fastest
crawler in the
experiment downloaded
10i % of all pages

•  Crawling order: random

Impact of Download Speed

Impact of Download Speed

•  Varying crawling orders:
–  link analysis metric
–  URL depth
–  increasing page length
–  random
–  decreasing page length

•  Download throughput:

48.1 KB/s

Impact of Crawling Order

Impact of Crawling Order

•  Region boosting
–  SE-C

 (with region boosting)
–  SE-P

 (natural region boosting)
–  SE-C

 (without region boosting)

•  Download throughput:
48.1 KB/s

Impact of Region Boosting

•  Assuming we have more time
for query processing, we can

–  relax the “AND” requirement
–  score more documents
–  use more complex scoring

techniques
•  costly but accurate

features
•  costly but accurate

functions

•  Ground-truth: top 20 results
•  Baseline: linear combination

of a BM25 variant with a link
analysis metric

•  A complex ranking function
composed of 1000 scorers

Search Relevance (Cambazoglu et al, SIGIR 2009)

26

Caching

•  Caching can save significant amounts of
computational resources

– Search engine with capacity of 1000 queries/second
– Cache with 30% hit ratio increases capacity to 1400

queries/second

•  Caching helps to make queries “local”
•  Caching is similar to replication on demand
•  Important sub-problem:
– Refreshing stale results (Cambazoglu et al, WWW 2010)

28

Inverted Index

<6,2>

cold

hot

in

not

peas

pot

the

<1,2> <2,2>

<3,1>

<4,4>

<5,2>

Dictionary

<2,1> <4,1>

<1,1> <4,3>

<5,1>

<6,1>

<3,2> <6,3>

<4,2> <5,3>

<3,4> <6,5>

<3,3> <6,4>

Inverted or Posting Lists

<5,4>

Caching posting lists

29

Caching in Web Search Engines

•  Caching query results versus caching
posting lists

•  Static versus dynamic caching policies
• Memory allocation between different

caches
l  Caching reduce latency and load on

back-end servers
•  Baeza-Yates et al, SIGIR 2007

32

Data Characterization
•  1 year of queries from Yahoo! UK
•  UK2006 summary collection
•  Pearson correlation between query term frequency and

document frequency = 0.424

Query distribution

Query term
distribution

UK2006 summary term
distribution

What you write
is NOT

what you want

33

Caching Query Results or Term Postings?

•  Queries
– 50% of queries are unique (vocabulary)
– 44% of queries are singletons (appear only once)
– Infinite cache achieves 50% hit-ratio

•  Infinite hit ratio = (#queries – #unique) / #queries

•  Query terms

– 5% of terms are unique
– 4% of terms are singletons
– Infinite cache achieves 95% hit ratio

37

Static Caching of Postings

• QTF for static caching of postings
 (Baeza-Yates & Saint-Jean, 2003):
– Cache postings of terms with the highest fq(t)

•  Trade-off between fq(t) and fd(t)

– Terms with high fq(t) are good to cache
– Terms with high fd(t) occupy too much space

• QTFDF: Static caching of postings

– Knapsack problem:
– Cache postings of terms with the highest fq(t)/fd(t)

38

Evaluating Caching of Postings

•  Static caching:
– QTF : Cache terms with the highest query log

frequency fq(t)
– QTFDF : Cache terms with the highest ratio fq(t) / fd(t)

•  Dynamic caching:

– LRU, LFU
– Dynamic QTFDF : Evict the postings of the term with

the lowest ratio fq(t) / fd(t)

39

Results

40

Combining caches of query results
and term postings

41

Experimental Setting

•  Process 100K queries on the UK2006
summary collection with Terrier

•  Centralized IR system
– Uncompressed/compressed posting lists
– Full/partial query evaluation

• Model of a distributed retrieval system
– broker communicates with query servers

over LAN or WAN

44

Centralized System Simulation

•  Assume M memory units
–  x memory units for static

cache of query results
–  M-x memory units for

static cache of postings

•  Full query evaluation with

uncompressed postings
–  15% of M for caching

query results
•  Partial query evaluation

with compressed postings
–  30% of M for caching

query results

45

WAN System Simulation

•  Distributed search
engine

–  Broker holds query
results cache

– Query processors hold
posting list cache

•  Optimal Response time

is achieved when most
of the memory is used
for caching answers

46

Query Dynamics

•  Static caching of query results
– Distribution of queries change slowly
– A static cache of query results achieves high hit rate even

after a week

•  Static caching of posting lists

– Hit rate decreases by less than 2% when training on 15, 6,
or 3 weeks

– Query term distribution exhibits very high correlation
(>99.5%) across periods of 3 weeks

Why caching results can’t reach
high hit rates

•  AltaVista: 1 week from
September 2001

•  Yahoo! UK: 1 year
–  Similar query length in

words and characters

•  Power-law frequency

distribution
–  Many infrequent queries

and even singleton
queries

•  No hits from singleton

queries

Caching
Results

Caching
Posting
Lists

Do not
Cache

Benefits of filtering out infrequent
queries

26.65 65.14 41.34 70.21 250k
21.08 62.24 36.36 69.23 100k
17.58 59.97 32.46 67.49 50k
UK AV UK AV

LRU Optimal Cache
size

•  Optimal policy does not cache singleton queries

•  Important improvements in cache hit ratios

Admission Controlled Cache (AC)

•  General framework for modelling a range of cache policies

•  Split cache in two parts

–  Controlled cache (CC)
–  Uncontrolled cache (UC)

•  Decide if a query q is frequent enough
–  If yes, cache on CC
–  Otherwise, cache on UC Baeza-Yates et al, SPIRE 2007

Why an uncontrolled cache?

•  Deal with errors in the predictive part

•  Burst of new frequent queries

•  Open challenge:

– How the memory is split in both types of
cache?

Features for admission policy

•  Stateless features
– Do not require additional memory
–  Based on a function that we evaluate over the query
–  Example: query length in characters/terms

•  Cache on CC if query length < threshold

•  Stateful features
– Uses more memory to enable admission control
–  Example: past frequency

•  Cache on CC if its past frequency > threshold
•  Requires only a fraction of the memory used by the cache

Evaluation

•  AltaVista and Yahoo! UK query logs
– First 4.8 million queries for training
– Testing on the rest of the queries

•  Compare AC with
– LRU: Evicts the least recent query results
– SDC: Splits cache into two parts

•  Static: filled up with most frequent past queries
•  Dynamic: uses LRU

Results for Stateful Features

All queries vs. Misses:
Number of terms in a query
•  Average number of terms for all queries = 2.4
•  Most single term queries are hits in the results cache

•  Queries with many
 terms are unlikely
 to be hits

59	

,	 for	 misses	 =	 3.2	

Static index pruning (Skobeltsyn	 et	 al,	 SIGIR08)	
•  Smaller version of the main index after the cache, returns:

–  the top-k response that is the same to the main index’s, or
–  a miss otherwise.

•  Assumes Boolean query processing
•  Types of pruning:

–  Term pruning – full posting lists for selected terms
–  Document pruning – prefixes of posting lists
–  Term+Document pruning – combination of both

62	

t1

t2

t3

t4

t1

t2

t3

t4

t1

t2

t3

t4

t1

t2

t3

t4

Term pruning Full index Document pruning T+D pruning

Posting list

Analysis of Results
•  Static index pruning: addition to results caching, not replacement

–  Term pruning performs well for misses also
 => can be combined with results cache

–  Document pruning performs well for all queries, but requires high
Pagerank weights with misses

–  Term+Document pruning improves over document pruning, but has
the same disadvantages

•  Pruned index grows with collection size

•  Document pruning targets the same queries as result caching

•  Lesson learned: Important to consider the interaction between the
components

70	

72

Locality
•  Many queries are local

– The answer returns only local documents
– The user clicks only on local documents

•  Locality also helps in:

– Latency of HTTP requests (queries, crawlers)
– Personalizing answers and ads

•  Can we decrease the cost of the search engine?
•  Measure of quality: same answers as centralized SE

73

Tier Prediction (Baeza-Yates et al, SIGIR 2009)

•  Can we predict if the query is local?
–  Without looking at results or
–  increasing the extra load in the next level

•  This is also useful in centralized search engines

– Multiple tiers divided by quality

•  Experimental results for

– WT10G and UK/Chile collections

Motivation: Centralized Systems

•  Traditionally partitioned corpora searched
in serial, say two tiers
– Second tier searched when first tier results are

unsatisfactory
– First tier faster and often sufficient
– If second tier required, system is less efficient

•  Better: search both corpora in parallel
•  Best: predict which corpora to search

Merge	

	
Corpus	 B	
(remote)	

Corpus	 A	

Corpus	
Predictor	

Result	
Assessor	

Failed	 Predic8on	 for	 B	

A	

B	

Query	

Answer	

Main	 path	
B	 Predicted	

1	

efn	

f-‐efn+efp	

1	 1-‐f	

efn	

f-‐efn	

f-‐efn+efp	

f-‐efn	 efn	

efn	

f	 :	 frac8on	 of	 queries	 that	 	 	 	 	 	 	
need	 the	 second	 8er	

efn	 :	 predic8on	 error	 	 for	 the	 	 	 	 	 	 	
first	 8er	
:	 predic8on	 error	 for	 the	 	 	 	 	
second	 8er	

efp	

79

Experimental Results

•  Centralized case:

•  Distributed case:

80

Trade-off Analysis (Baeza-Yates et al., 2008)

Is it worth it?

81

Tier Prediction Example

•  Example:
– System A is twice faster than System B
– System B costs twice the costs of System A

•  Centralized case:
– 29% faster answer time at 20% extra cost

•  Distributed case:
– 15% faster answer time at 0.5% extra cost

•  In both cases the trade-off is worth it

82

Scaling Up Adapted from Moffat and Zobel, 2004.

cluster

clusters

clusters

clusters

Caching

85

Document Partitioning

<6,2>

cold

hot

in

not

peas

pot

the

<1,2> <2,2>

<3,1>

<4,4>

<5,2>

Dictionary

<2,1> <4,1>

<1,1> <4,3>

<5,1>

<6,1>

<3,2> <6,3>

<4,2> <5,3>

<3,4> <6,5>

<3,3> <6,4>

Inverted Lists

<5,4>
 P1 P3

P3

P1 P3

P3

86

Term Partitioning

<6,2>

cold

hot

in

not

peas

pot

the

<1,2> <2,2>

<3,1>

<4,4>

<5,2>

Dictionary

<2,1> <4,1>

<1,1> <4,3>

<5,1>

<6,1>

<3,2> <6,3>

<4,2> <5,3>

<3,4> <6,5>

<3,3> <6,4>

Inverted Lists

<5,4>
 P1

P3

87

Index Partitioning: Comparison

•  By documents
•  Easy to partition
•  Easier to build
•  No concurrency
•  Perfect balance
•  Less variance
•  Easier to maintain

By terms
Random partition
Hard to build
Concurrent
Less balanced
Higher variance
Harder to maintain

•  Within a cluster
–  term-based

•  performance
–  document-based

•  fault tolerance
•  load balance

•  Across data centers
–  geographical
–  language-based

Index Partitioning: Practice

89

Indexing

•  The main open problem?
•  Document partitioning is natural
• Mixing partitionings:

–  Improves search
–  Does not improve indexing

• More on collection selection?
–  Puppin at al, 2010

Master Site Selection

New documents
No search log yet
Assign master site

Predict where document will be requested
Use evidence of user interest of each site

Language
Query terms distribution
Results cache invalidation

98

(Brefeld, Cambazoglu & Junqueira, WSDM 2011;
 R. Blanco et al, CIKM 2011

Terms Distribution

Fine grain language/interest
Compare terms in document with terms at
each site

KL divergence
Dirichlet priors smoothing

Sources of terms distribution
User queries
Documents in user results

99

Master Selection: Terms Distribution

Web Crawler

Indexer Query
Processor

Site 2

Users

Master Selection

Term statistics
site 1

Term statistics
site 2

Indexer Query
Processor

Site 1

Users

100

Cache Invalidation

Search engine cache results
Less processing

Protect from activity spikes

Incremental indexing
Better reactivity
Cache may serve stale results

Cache invalidation algorithms

101

Cache Invalidation

Number of invalidations to evaluate potential impact
Target top-k results directly

Preserve co-occurrences of terms

Cost
Requires all document
Approximations available

Free if already in place

Not all documents cause invalidation

102

Master Selection: Invalidation

Web Crawler

Indexer Query
Processor

Site 2

Users

Master Selection

Indexer Query
Processor

Site 1

Users

invalidationinvalidation

103

Experimental Setup
•  5 search sites

•  Non-trivial

•  32 millions Web pages
•  7 millions queries
•  2 sets

•  Training
•  Testing

•  3 algorithms

 104

Language Based Assignment

 0

 0.2

 0.4

 0.6

 0.8

 1

s1 s2 s3 s4 s5

la
n
g
u
a
g
e
 d

is
tr

ib
u
tio

n

sites

l80

l79

l78

l77

other language

105

Evaluation

Goal = provide local results

Metric = proportion of local results

1. Build knowledge using training documents/queries on
centralized search engine

2. Label documents with search site using algorithm

3. Run test queries

106

Evaluation

100% locality is unlikely
Some documents are accessed from different locations

Random gives 20% locality (5 search sites)

Very popular documents are difficult
“Universal” success

Unpopular documents are difficult
Low quality

Noise

10
7

Performance on all Documents

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000

A
ve

ra
g
e
 L

o
ca

lit
y

Total popularity

best
worst

random
lang
KL-d
KL-q

10
8

Performance with Invalidation

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000

A
ve

ra
g
e
 L

o
ca

lit
y

Total popularity

best
worst
rand
lang
KL-d
KL-q

cache

10
9

New Document Assignment

Significant improvement over language baseline

Stable enough to rely on master selection
May add master migration in the future

Master selection
Ensures recall

Avoid waste of indexing capacity

Need for a replication algorithm for popular documents
Less forwarding

Slightly increase processing of ALL queries

11
0

111

Star Topology (Baeza-Yates et al, CIKM 2009
 Best paper award)

Local queries (x)

Global queries
n sites

Multi-site Web Search Architecture

Key points
•  multiple, regional data

centers (sites)
•  user-to-center

assignment
•  local web crawling
•  partitioned web index
•  partial document

replication
•  query processing with

selective forwarding

Cost Model
•  Cost depends on Initial cost, Cost of Ownership over

time, and Bandwidth over time.
•  Cost of one QPS

–  n sites, x percentage of queries resolved locally, and relative cost
of power and bandwidth 0.1 (left) and 1 (right)

Optimal Number of Sites

•  Site Si knows the highest possible score bj that site Sj
can return for a query

–  Assume independent query terms
•  Site Si processes query q:

•  Optimizations:

–  Caching
–  Replication of set G of most frequently retrieved documents
–  Slackness factor ɛ replacing bj with (1-ɛ)bj

Query Processing

Retrieve top-n
local results

Find score s(d,q) of
n-th local result s(d,q)≤ bj

Forward query
to site Sj

Return results
to users

True

Merge results

False

Query Processing Results

•  Locality at rank n for a search engine with 5 sites

•  For what
percentage
of query
volume, we
can return
top-n
results
locally

Cost Model Instantiation
•  Assume a 5-site distributed Web search engine in a star topology
•  Optimal choice of central site Sx : site with highest traffic in our

experiments
•  Cost of distributed search engine relative to cost of centralized one

0.645 0.011 0.634 BCGε0.9

0.712 0.014 0.698 BCGε0.7

0.827 0.020 0.807 BCGε0.5

0.973 0.028 0.945 BCGε0.3

1.114 0.036 1.078 BCGε0.1

1.171 0.040 1.131 BCG

1.300 0.046 1.254 BC

1.477 0.056 1.421 B

Cost of distributed
Cost of centralized

Bandwidth
Cost Power Cost Query

Processing

Improved Query Forwarding
(Cambazoglu et al, SIGIR 2010)

•  Ranking algorithm
–  AND mode of query processing
–  the document score is computed simply summing query term weights (e.g., BM25)

•  Query forwarding algorithm

–  a query should be forwarded to any site with potential to contribute at least one
result to the global top k

–  we have the top scores for a set of off-line queries on all non-local sites

•  Idea

–  set an upper bound on the possible top score of a query on non-local sites using
the scores computed for off-line queries

–  decide whether a query should be forwarded to a site based on the comparison
between the locally computed k-th score and the site’s upper bound for the query

Thresholding Algorithm

Thresholding Algorithm

LP Formulation

Offline Query Generation
•  Offline query sets

–  D1: the vocabulary of the document collection
–  D2: all possible term pair combinations in the collection

vocabulary
–  Q1: vocabulary of a train query log
–  Q2: term pairs in train queries

•  Tested combinations
–  Q1
–  D1 (baseline: B-Y et al., CIKM’09) – 10% improvement
–  Q1∪Q2
–  D1∪Q2
–  D1∪D2
–  Oracle

Experimental Setup
•  Simulations via a very detailed simulator

•  Data center locations
–  scenarios:

•  low latency (Europe): UK, Germany, France, Italy, Spain
•  high latency (World): Australia, Canada, Mexico, Germany, Brazil

–  assumed the data centers are located on capital cities
–  assumed that the queries are issued from the five largest city in the country

•  Document collection
–  randomly sampled 200 million documents from a large Web crawl
–  a subset of them are assigned to a set of sites using a proprietary classifier

•  Query log
–  consecutively sampled about 50 million queries from Yahoo! query logs
–  queries are assigned to sites according to the front-ends they are submitted to
–  first 3/4 of the queries is used for computing the thresholds; remaining 1/4 is used

for evaluating performance

Locality of Queries

•  Regional queries
–  most queries are regional
–  Europe: about 70% of

queries appear on a single
search site

–  World: about 75% of
queries appear on a single
search site

•  Global queries
–  Europe: about 15% of

queries appear on all five
search sites

–  World: about 10% of
queries appear on all five
search sites

Performance of the Algorithm
•  Local queries

–  about a quarter of queries can be
processed locally (D1-Q2)

–  10% increase over the baseline
–  oracle algorithm can achieve 40%

•  Average query response times
–  Europe: between 120ms–180ms
–  World: between 240ms–450ms

Performance of the Algorithm
•  Fraction of queries that are answered under a certain response time

–  Europe: around 95% under 400ms
–  World: between 45%–65% under 400ms

Partial Replication and Result Caching
•  Replicate a small fraction of docs

–  prioritize by past access frequencies
–  prioritize by frequency/cost ratios

•  Result cache
–  increase in local query rates: ~35%–45%
–  hit rates saturate quickly with increasing TTL

Further Optimizations

132

Conclusions

•  By using caching (mainly static) we can increase
locality and we can predict when not to cache

•  With enough locality we may have a cheaper

search engine without penalizing the quality of the
results or the response time

•  We can predict when the next distributed level will

be used to improve the response time without
increasing too much the cost of the search engine

•  We are currently exploring all these trade-off's

133

Thank you! Merci!

Questions?
rbaeza@acm.org

Second edition
appeared in 2010

ACM WSDM 2011, February, Hong Kong
ACM SIGIR 2011, July, Beijing, China
SPIRE 2011, September, Pisa, Italy

