

Tim Kraska <tim_kraska@brown.edu>

1 PetaByte reported every second by LHC

My Hidden Motivation

When the second So hard?

Everybody thinks about **Data**I

...not Queries

Tool complexity

DB-hard Queries

Company_Name	Address	Market Cap
Google	Googleplex, Mtn. View CA	\$210Bn
Intl. Business Machines	Armonk, NY	\$200Bn
Microsoft	Redmond, WA	\$250Bn

SELECT Market_Cap
From Companies
Where Company_Name = "IBM"

Number of Rows: 0

Problem:
Entity Resolution

DB-hard Queries

Company_Name	Address	Market Cap
Google	Googleplex, Mtn. View CA	\$210Bn
Intl. Business Machines	Armonk, NY	\$200Bn
Microsoft	Redmond, WA	\$250Bn

SELECT Market_Cap
From Companies
Where Company_Name = "Apple"

Number of Rows: 0

Problem: Missing Data

DB-hard Queries

SELECT Image From Pictures Where Image contains "professor with beard"

Number of Rows: 0

Problem:
Missing Intelligence

Easy Queries

SELECT Image From Pictures Where Image contains "professor with beard"

Micro-Task CrowdSourcing

amazon mechanical turk™ Artificial Artificial Intelligence

Make Money by working on HITs

HITs - Human Intelligence Tasks - are individual tasks that you work on. <u>Find HITs now.</u>

As a Mechanical Turk Worker you:

- Can work from home
- Choose your own work hours
- Get paid for doing good work

Get Results from Mechanical Turk Workers

Ask workers to complete HITs - *Human Intelligence Tasks* - and get results using Mechanical Turk. <u>Get started.</u>

As a Mechanical Turk Requester you:

- Have access to a global, on-demand, 24 x 7 workforce
- Get thousands of HITs completed in minutes
- Pay only when you're satisfied with the results

Overview

Problem

Contributions

- How to integrate this new resource "humans" for DB-hard queries
- How to ensure high-quality results

- CrowdDb Systems
 - Architecture
 - Query language
 - Query execution
- Quality Control for Sets

Queries in the Open World

CREATE **CROWD** TABLE PEOPLE(name, age, picture, beard, occupation)

Big Questions

When should we **Stop** asking **questions**?

Can we **estimate** query **result set size**?

Querying the crowd

- SELECT name FROM US_States
 - Experiment runs on Mechanical Turk
 - Avg. "accumulation curve"

Species estimation

Species estimation

- Sample drawn from a population
 - There are *N* different types within the population, *N* unknown
 - Analog: worker answers are samples from item distribution

- Calculate query progress
 - based on estimate of N
 - Use Chao92 estimator, suitable for open-world

Worker behavior: example

- United Nations member countries (192)
 - Simulated vs. actual cardinality estimate

answers

Worker behavior

ρ = sampling process with replacement*λ* = sampling process without replacement

"Streakers" [Heer10]

Streakers provide a lot of unique answers

Streaker-tolerant estimator

- Chao92 estimator
 - Non-parametric, "frequency of frequencies" statistic
 - $f_1 = singletons, f_2 = doubletons, f_0 = unobserved$
 - Uses notion of sample coverage: $\hat{C} = 1 f_1/n$

$$\hat{N}_{chao92} = \frac{c}{\hat{C}} + \frac{n(1-\hat{C})}{\hat{C}}\hat{\gamma}^2$$

- Adding streaker-tolerance
 - Estimator over-predicts cardinality with abundance of unique answers (f₁)
 - Remove f₁ outliers

$$\hat{N}_{crowd} = \frac{cn}{n - \sum_{i} \min(f_1(i), 2\hat{\sigma}_i + \bar{x}_i)}$$

with coefficient of variance = 0

Streaker-tolerant estimator: results

- "UN member nations" (run 1)
 - Streaker during the middle ameliorated
- "UN member nations" (run 2)
 - Streaker at beginning
 - Other workers shared skewed distribution, yields low cardinality estimate

Now that we have the data...

...how do we analyze it

The Little Secret

Machine Learning is like Teenage Sex

- Everybody talks about it
- Nobody knows how to do it
- Everyone thinks everyone else is doing it
- So everyone claims they are doing it

The Problem

What you *want* to do

Build a Classifier

What you have to do

- Learn the internals of ML classification algorithms, sampling, feature selection, X-validation,....
- Potentially learn Spark/Hadoop/...
- Implement 3-4 algorithms
- Implement grid-search to find the right algorithm parameters
- Implement validation algorithms
- Experiment with different samplingsizes, algorithms, features

•

and in the end

Ask For Help

1st Goal: Simplify the use of ML algorithms

2nd Goal: Make it easier to implement distributed ML algorithms

Collaborators

and others.....

A Declarative Approach to ML

A Declarative Approach to ML

Use Cases

Supervised Classification: ALS Prediction

var X = load("als_clinical", 2 to 10)
var y = load("als_clinical", 1)
var (fn-model, summary) = tor

Unsupervise ithm independence (1, 5min) Extraction: Twitter

var G = lc Algorithmeter_network")
var hubs-n = findTopKDegreeNodes(G, k = 1000)
var text-features = textFeaturize(load("twitter_tweet_data"))
var T-hub = join(hub-nodes, "u-id", text-features, "u-id")
findTopFeatures(T-hub)

Use Cases

Supervised Classification: ALS Prediction

var X = load("als_clinical", 2 to 10)
var y = load("als_clinical", 1)
var (fn-model, summary) = top(doClassify(X, y), 5min)

Hints

Supervised Classification: ALS Prediction

var X = load("als_clinical", 2 to 10)
var y = load("als_clinical", 1)
var (fn-model, summary) = top(doClassify(X, y, SVM), 5min)

Streaming-like Data Model

Infinite ordered stream of items, being either models (i.e., higher-ordered functions) or tuples

MLbase Architecture

MLbase Architecture

MLI: Machine Learning Interface

- Shield ML Developers from low-level-details: provide familiar mathematical operators in distributed setting
- Physical independence between ML algorithm and runtime
- Initial abstractions: MLTable, MLMatrix, MLOpt
- Current supported run-times:

MLTable

- Flexibility when loading data
 - e.g., CSV, JSON, XML
 - Heterogeneous data across columns
 - Missing Data
 - Feature extraction
- Common Interface
- Supports MapReduce and Relational Operators
- Inspired by DataFrames (R) and Pandas (Python)

MLSubMatrix

- Linear algebra on local partitions
 - E.g., matrix-vector
 operations for mini batch logistic regression
 - E.g., solving linear systems of equations for Alternating Least Squares

• Sparse and Dense Matrix Support

MLSolve

- Distributed implementations of common optimization patterns
 - E.g., Stochastic-Gradient-Descent: Applicable to summable ML losses
 - E.g., LBFGS: An approximate 2nd order optimization method
 - E.g., ADMM:
 Decomposition /
 coordination procedure

MLbase Architecture

2 Binders Full of Algorithms

ML Developer

Implementation

On top of MLI (with optimization hints)

Contract

- Type (e.g., classification)
- Parameters
- Runtime (e.g., O(n))
- Input-Specification
- Output-Specification
- ...

Today: Half-Full Binders

- **Regression:** Linear Regression (+Lasso, Ridge)
- **Classification:** Logistic Regression, Linear SVM (+L1, L2), Multinomial Regression, [Naïve Bayes, Decision Trees]
- **Collaborative Filtering:** Alternating Least Squares, [DFC]
- **Clustering:** K-Means, [DP-Means]
- Optimization Primitives: SGD, Parallel Gradient, [L-BFGS, ADMM, Adagrad]
- Feature Extraction: [PCA], N-grams, feature cleaning normalization
- **Other tools**: Cross Validation, Evaluation Metrics
- Released as part of Spark and MLlib

Example: Alternating Least Squares

System	Lines of Code
Matlab	20
Mahout	865
GraphLab	383
MLI	32

MLbase Architecture

⁽fn-model, summary)

Optimization Goals

1. Return meaningful results 2. Optimize the **Whole** processing pipeline 3. Optimize quality and time simultaneously

Current Optimization Approach

(1) MQL

(2) Generic Logical Plan

var X = load("als_clinical",2 to 10)
var y = load("als_clinical", 1)
var (fn-model, summary) =
 top(doClassify(X, y), 10min)

(1) MQL

var X = load("als_clinical",2 to 10)
var y = load("als_clinical", 1)
var (fn-model, summary) =
 top(doClassify(X, y), 10min)

(fn-model, summary)

DB Optimizer meets ML Parameter Tuning

More than Grid-Search, more than Relational Query Optimization

MLbase cost-based optimization: Quality & Time (=budget)

- Considers algorithms, system techniques and best practice workflows together
- Statistics about data and algorithms

 → Hope to find strong correlation between data statistics and the quality of an algorithm
- Optimization across steps (e.g., cleaning, feature extraction, classification,...)
- Robustness/Avoiding Overfitting & Hypothesis Pitfall (messing up quality is worse than time in traditional query optimization)

Possible Optimizations (classification)

Relational Optimizations (Top-K Pushdown, Join-Ordering,...)

Static ML Selection Rules

- Imbalance of labels
- SVMs are more sensitive to the scale-parameter than AdaBoost to rounds
- If $SVM \rightarrow$ normalize data between [-1, 1]
- If data contains outliers → pre-clean data or forego AdaBoost
- ..

Run-Time Optimization Rules

- Caching: If 2nd run and deterministic, start with previously most successful model
- Set sample-size to fit Input-Data as well as intermediate result in memory
- Partition data according to cross-validation

•

Cost-based Optimization Rules

- Materialization and indexing
- Expected quality improvement based on the history
- Consider cost of pre-cleaning, normalization, algorithm complexity,...

.

Why Optimize? Pitfalls

Why Optimize? Quality

	SVM		AdaBoost
	original	scaled	
ala	82.93	82.93	82.87
australian	85.22	85.51	86.23
breast	70.13	97.22	96.48
diabetes	76.44	77.61	76.17
fourclass	100.00	99.77	91.19
splice	88.00	87.60	91.20

Why Optimize? Quality

SVM

AdaBoost

Why Optimize? Speed

- Running 1 algorithm tends to be **I/O bound**
- Idea: train in parallel with different algorithms and parameters → Similar to shared cursors in DB-world
- Questions:
 - How many models?
 - \rightarrow How to make it cache-aware
 - Impact of sampling?
 - How to leverage modern CPUs, in particular vectorization and CPU pipelining?

Direction

- Released:
 - MLI interface
 - Half-full binders as part of Spark
 - Some simple feature extractors
 - (End-to-end use cases)
- Working on:
 - Optimization techniques
 - Cost-based optimizer
 - Unified language for end users and ML developers
 - Advanced ML capabilities: Time-series algorithms, graphical models, advanced optimizations, online updates, sampling for efficiency
 - Integration into TupleWare: High-Performance analytic platform
 - Visualization

MLBase - Summary

- MLbase is a first declarative machine-learning system
- It simplifies ML in the same way as databases simplify data management
- Teaser: TupleWare will integrate Mlbase and leverage ideas from *programming languages* to significantly speed-up ML and explorative data analysis

Tim Kraska tim_kraska@brown.edu