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My Hidden Motivation






Everybody thinks about
Data ...not Queries

Tool complexity

A\

Multi-hypotheses
Pitfall
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DB-hard Queries

Google Googleplex, Mtn. View CA  $210Bn
Intl. Business Machines Armonk, NY S200Bn
Microsoft Redmond, WA S250Bn

SELECT Market_cCap
From Companies
where Company_Name = “IBM”

Number of Rows: O
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= Entity Resolution
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Problem:



DB-hard Queries

Google Googleplex, Mtn. View CA  $210Bn
Intl. Business Machines Armonk, NY S200Bn
Microsoft Redmond, WA S250Bn

SELECT Market_cCap
From Companies
where Company_Name = “Apple”

Number of Rows: O

Problem:
Missing Data



DB-hard Queries
_— !Ej o

SELECT Image
From Pictures
where Image contains
“professor with beard”|

Number of Rows: 0

Missing Intelligence
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Easy Queries

SELECT Image

From Pictures

where Image contains
“professor with beard”
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Micro-Task CrowdSourcing

amazon mechanical turk™

Artificial Artificial Intelligence

Make Money Get Results

by working on HITs from Mechanical Turk Workers
HITs - Hurnan Intelligence Tasks - are individual tasks that Ask warkers to complete HITs - Human Intelligence Tasks - and
you work on. Find HITs now. get results using Mechanical Turk. Get started.
As a Mechanical Turk Worker you: As a Mechanical Turk Requester you:
e Can work from home ® Have access to a global, on-demand, 24 x 7 workforce
e Choose your own work hours ® Get thousands of HITs completed in minutes
e Get paid for doing good wark ® Pay only when you're satisfied with the results
Find an Work Earn Fund your Load your Get
interesting task money account tasks results

® 00
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Overview

Problem

How to integrate this new resource
“humans” for DB-hard queries
How to ensure high-quality results

Contributions

Ret
“L K

* CrowdDb Systems
* Architecture
* Query language
* Query execution
* Quality Control for Sets
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Queries in the Open World

CREATE CROWD TABLE PEOPLE (name,
age, plcture, beard, occupation)




Big Questions
When should we STOP asking
qguestions?

Can we estimate query
result set size>



Querying the crowd

* SELECT name FROM US_States

— Experiment runs on Mechanical Turk
— Avg. “accumulation curve”

States: unique items

Avg # unique &
answers

I I I I I I
0 50 100 150 200 250 300

# responses



Species estimation
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Species estimation

 Sample drawn from a population
— There are N different types within the population, N

unknown
— Analog: worker answers are samples from item

distribution

>|®
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S o o o

© o
N Answers

e Calculate query progress
— based on estimate of N
— Use Chao92 estimator, suitable for open-world



Worker behavior: example

e United Nations member countries (192)
— Simulated vs. actual cardinality estimate
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Worker behavior

p = sampling process with replacement
A = sampling process without replacement

(A,B,G,H, F,I,A E EK,..)

T

p
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sk

S G DL T R . .

(a) Database Sampling



“Streakers” teero

H#H answers

50 100 150 200

| WHHHHHFHHHHHHHHH

workers

0
I

Streakers provide a lot of unique answers
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Streaker-tolerant estimator

e Chao92 estimator

— Non-parametric, “frequency of frequencies” statistic
 f, =singletons, f, = doubletons, f, = unobserved
* Uses notion of sample coverage: (¢ =1 — fi/n

£A+7’L(1—A—CA')§/2
C C

A

Nchao92 —

* Adding streaker-tolerance

— Estimator over-predicts cardinality with abundance of
unique answers (f,)

cn

—_ I Ncrow — =
Remove f, outliers T TS min(fi(i), 26, + 1)

with coefficient of variance = 0



Streaker-tolerant estimator: results

“UN member nations” .- .
'go -/.’. e .\I
(ru N 1) gg T ;;j’;’l"'v'vjva‘v: ToTVRy v
— Streaker during the °8 - s/ o ongna
middle ameliorated o | L e
200 400 600 800
# answers
* “UN member nations”
(run 2) .8
o . g = l’.’.~.\l\
— Streaker at beginning R e e S A
— Other workers shared - . 0 .
skewed distribution, yields = [V e estimator
low cardinality estimate oL | [ T
200 400 600 800

# answers



Now that we ..how do we
have the data... analyze it




The Little Secret

Machine Learning is like Teenage Sex
- Everybody talks about it

- Nobody knows how to do it

- Everyone thinks everyone else is doing it

- So everyone claims they are doing it



The Problem

What you have to do

What you want to do

Build a Classifier

Learn the internals of ML
classification algorithms, sampling,
feature selection, X-validation,....

Potentially learn Spark/Hadoop/...
Implement 3-4 algorithms

Implement grid-search to find the
right algorithm parameters

Implement validation algorithms

Experiment with different sampling-
sizes, algorithms, features

and in the end

Ask For Help



Ist Goal: Simplify the use of ML algorithms

2nd Goal: Make it easier to implement distributed ML algorithms



Collaborators
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A Declarative Approach to ML

SQL Result




A Declarative Approach to ML

SQL Result MQL Model




Use Cases

Supervised Classification: ALS Prediction

var X = load("als_clinical", 2 to 10)
var y = load("als_clinical", 1)
var (fn-model, summary) =t

y), 5min)

Unsupervi xtraction: Twitter

var G =| er_network")

var hubs- = findTopKDegreeNodes(G, k = 1000)

var text-features = textFeaturize(load("twitter _tweet_data"))
var T-hub = join(hub-nodes, "u-id", text-features, "u-id")
findTopFeatures(T-hub)



Use Cases

Supervised Classification: ALS Prediction

var X = load("als_clinical", 2 to 10)
var y = load("als_clinical", 1)
var (fn-model, summary) = top(doClassify(X, y), 5min)



Hints

Supervised Classification: ALS Prediction

var X = load("als_clinical", 2 to 10)
var y = load("als_clinical", 1)
var (fn-model, summary) = top(doClassify(X, y, SVM), 5min)



Streaming-like Data Model

Infinite ordered stream of items, being either
models (i.e., higher-ordered functions) or tuples

anuui Hg




MLbase Architecture

Declarative result

ML Task (e.g., fn-model & summary)
Binders full of p— | A
@a_lgorlthms Master Server '

allows to add — "

Meta-Data arser
more ML Contract + d .

Code : LLP Adaptive

ope rators Binders of = ..

Algorithms \4 o  Optimizer @

COML T .
Statistics Optlmlzer M e.StImates run?
*PLP T time and quality
improvement
Executor/Monitoring

Statistics ML Developer
G about algorithms ﬁ

and data

Runtime Runtime Runtime Runtime
. e I Y O B
Interface to simplify % % % %

implementing distr.
ML algorithms



Binders full of

MLbase Architecture

algorithms
@allows to add

more

operators

ML Developer

@Statistics
about algorith

and data

MLI

ms

Interface to simplify

implementing
ML algorithms

distr.

-

Adaptive
Optimizer

Declarative result
ML Task (e.g., fn-model & summary)
User | A
Master Server '
Meta-Data Parser
ML Contract +
Code Binders of LLP =
Algorithms v 8
COML ol
Statistics Optlmlzer # ‘
*PLP T

Executor/Monitoring

ﬁ

Runtime

Runtime

Runtime

;
=

t
=

'

=

Runtime

¢
=

estimates run-@

time and quality
improvement



() MLI: Machine Learning Interface

e Shield ML Developers from low-level-details: provide
familiar mathematical operators in distributed setting

* Physical independence between ML algorithm and run-
time

* |nitial abstractions: MLTable, MLMatrix, MLOpt

* Current supported run-times:

o ———_

'
spark’ =

TupleWare
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MLTable

Flexibility when loading
data

— e.g., CSV,JSON, XML

— Heterogeneous data across
columns

— Missing Data
— Feature extraction
Common Interface

Supports MapReduce and
Relational Operators

Inspired by DataFrames (R)
and Pandas (Python)




MLSubMatrix

* Linear algebra on local
partitions
— E.g.,matrix-vector
operations for mini-
batch logistic regression
— E.g., solving linear
systems of equations for

Alternating Least
Squares

e Sparse and Dense
Matrix Support




MLSolve

e Distributed
implementations of
common optimization
patterns

— E.g., Stochastic-Gradient-
Descent: Applicable to
summable ML losses

— E.g., LBFGS: An
approximate 2nd order
optimization method

— E.g., ADMM:
Decomposition /
coordination procedure




Binders full of
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() Binders Full of Algorithms

Implementation
On top of MLI

(with optimization hints)

N
o o
“

ML Developer

.
+

Contract

 Type (e.g., classification)
* Parameters
 Runtime (e.g., O(n))

* Input-Specification

* OQOutput-Specification



Today: Half-Full Binders

Regression: Linear Regression (+Lasso, Ridge)

Classification: Logistic Regression, Linear SVM (+L1, L2),
Multinomial Regression, [Naive Bayes, Decision Trees]

Collaborative Filtering: Alternating Least Squares, [DFC]
Clustering: K-Means, [DP-Means]

Optimization Primitives: SGD, Parallel Gradient, [L-BFGS,
ADMM, Adagrad]

Feature Extraction: [PCA], N-grams, feature cleaning
normalization

Other tools: Cross Validation, Evaluation Metrics
Released as part of Spark and MLIib



Example: Alternating Least Squares

System Lines of Code

Matlab 20
Mahout 865
Graphlab 383
MLI 32

walltime (s)

x104

Bl 1 Machine
I 4 Machines
51[__]9 Machines
=116 Machines
B 25 Machines

{ -

-
a

—h

o
(3}

MLbase GraphLab Mahout

Matlab-meXx



MLbase Architecture

Binders full of
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() Optimization

MaQlL

var X = load("als_clinical",2 to 10)

var y = load("als_clinical", 1)
var (fn-model, summary) =

top(doClassify(X, y), 10min)

Execution Plan

load (als_clinical)

X, y)

down-sample 10%

; X, y)

standard feature
normalizer

| (X”, y") ___________

validation

i -
store |
create 10-folds —>! .
I normalized folds |
folds
cross cross cross

validation validation

SVM
kernel: RBF
A=10° o =1/d x 10°

SVM e AdaBoost
kernel: RBF rounds = 20
A=10® o=1/d x 10°

@ fn-model

(model-params,
cross-validation-summary)

top-1
(model-params,
cross-validation-summary)

baseline-check:
most common
label

l

calculate

baseline-check:
nearest neighbor

train model = je--------------- N
fn-model I'

|

|

|

|

rate

(fn-model, summary)



Optimization Goals

1. Return meaningful results

2. Optimize the whole
processing pipeline

3. Optimize quality and time
simultaneously



Current Optimization Approach

Idea: 3-Step Process

(Avoid pitfall




() Optimization

(1) MQL

var X = load("als_clinical",2 to 10)

var y = load("als_clinical", 1)

var (fn-model, summary) =
top(doClassify(X, y), 10min)

(2) Generic Logical Plan

{

load (als_clinical)

Xy

down-sample
Xy

| grid-search i
|
I

| configure model

| cross-validate |

S 2 —

featurization | original " bin ” normalized |

technique | SVM || Adaboost |

kernel | RBF | | linear || stumps |

params | regularization || rounds |
y

model/data
interpretation

summary

| top-1 |

(fn-model, summary)




() Optimization

(1) MQL

var X = load("als_clinical",2 to 10)

var y = load("als_clinical", 1)

var (fn-model, summary) =
top(doClassify(X, y), 10min)

| grid-search i
|
I

(2) Generic Logical Plan

{

load (als_clinical) pF----—-----

X y)

down-sample
Xy

| configure model

featurization | original " bin ” normalized |

technique | SVM || Adaboost |

kernel | RBF | | linear || stumps |

params | regularization || rounds |
v

| cross-validate |

**

model/data
interpretation

summary

| top-1 |

(fn-model, summary)




() Optimization

(2) Generic Logical Plan

(1) MQL

var X = load("als_clinical",2 to 10)

var y = load("als_clinical", 1)

var (fn-model, summary) =
top(doClassify(X, y), 10min)

{

grid-search

| configure model |

load (als_clinical) F-------

featurizationl original " bin ” normalized |

technique | SVM ||Adaboost |

kernel | RBF || linear || stumps |

params | regularization || rounds |
v

| cross-validate |

train model

model/data
interpretation

| top-1 |

(fn-model, summary)




(2) Generic Logical Plan

{

Optimization

(3) Optimized Plan

load (als_clinical)

X y)

down-sample
X\

|

grid-search

—

configure model

—

featurization | original " bin ” normalized |
technique | SVM || Adaboost |
kernel | RBF | | linear || stumps |
params | regularization | | rounds |

Y

| cross-validate

o Ty

train model

@ fn-model

<—| down-sample |

@ fn-model

model/data
interpretation

summary

7

| top-1 |

(fn-model, summary)

load (als_clinical)

; X, y)

down-sample 10%

; X, y)

standard feature
normalizer

; X" y")

create 10-folds

! store K
‘._>|

cross
validation

cross
validation

SVM
kernel: RBF
A=10° o =1/d x 10°

SVM
kernel: RBF
A=10° o=1/d x 10°

@ fn-model

I normalized folds |
folds

cross
validation

AdaBoost

rounds = 20

(model-params,
cross-validation-summary)

top-1

(model-params,
; cross-validation-summary)

train model

m@ fn-model

baseline-check:
most common
label

l

baseline-check:
nearest neighbor

(fn-model, summary)

calculate
misclassification
rate




DB Optimizer meets ML Parameter Tuning

More than Grid-Search, more than Relational Query
Optimization

MLbase cost-based optimization:
Quallty & Time (=budget)

* Considers algorithms, system techniques and best
practice workflows together

 Statistics about data and algorithms
— Hope to find strong correlation between data statistics and
the quality of an algorithm

* Optimization across steps (e.g., cleaning, feature extraction,
classification,...)

* Robustness/Avoiding Overfitting & Hypothesis Pitfall (messing
up quality is worse than time in traditional query optimization)



Possible Optimizations (classification)

Relational Optimizations (Top-K Pushdown, Join-Ordering,...)

Static ML Selection Rules
* Imbalance of labels

eeeeeeeeeee.* - SVMs are more sensitive to the scale-parameter than
“’E” AdaBoost to rounds
7 ; * If SYM = normalize data between [-1, 1]
» If data contains outliers = pre-clean data or forego
oo {500 AdaBoost
validation validation validation i . . . .
F S ’w eeeeee W Adaboos! W | Run-Time Optimization Rules
— ; G *  Caching: If 2" run and deterministic, start with previously
most successful model
@ o — E_f'____'fi___mf"_f)_d: * Set sample-size to fit Input-Data as well as intermediate
SR ®|“ resu.lt. in memory o
mostommon e e mer [| misclsifcaton fu - * Partition data according to cross-validation

— I~ .

(fn-model, summary)

Cost-based Optimization Rules

* Materialization and indexing

* Expected quality improvement based on the history

* Consider cost of pre-cleaning, normalization, algorithm
complexity,...



Why Optimize? Pitfalls

@
38/40 = 95%



Why Optimize?
Quality

SVM AdaBoost

original | scaled

82.87

ala

australian

breast 70.13 97.22 96.48
diabetes 76.44 77.61 76.17

fourclass ||| 100.00 || 99.77 91.19

splice 88.00 87.60 91.20




Why Optimize?
Quality

100%

90%
80% Scale-factor
70% u107-6

§ 60% . 10A7-3

= 9

SVM -

< 40%
30% L1073
20% L1076
10%

0%

ala australian breast diabetes fourclass splice

100%
90%
80% -
70% - regularization
AdaBoost = 60% - “2s
% 50% - 50
< 40% - %100
30% - 200
20% -

10% -
0% -

ala australian breast diabetes fourclass splice



Why Optimize?
Speed

* Running 1 algorithm tends to be |/O bound

* |dea: train in parallel with different algorithms
and parameters = Similar to shared cursors
in DB-world

e Questions:

— How many models?
- How to make it cache-aware

— Impact of sampling?

— How to leverage modern CPUs, in particular
vectorization and CPU pipelining?



Direction

* Released:
— MLl interface
— Half-full binders as part of Spark
— Some simple feature extractors
— (End-to-end use cases)

 Working on:
— Optimization techniques
— Cost-based optimizer
— Unified language for end users and ML developers

— Advanced ML capabilities: Time-series algorithms, graphical
models, advanced optimizations, online updates, sampling for
efficiency

— Integration into TupleWare: High-Performance analytic platform

— Visualization



MLBase - Summary

 MLbase is a first declarative machine-learning
system

* |t simplifies ML in the same way as databases
simplify data management

 Teaser: TupleWare will integrate Mlbase
and leverage ideas from programming
languages to significantly speed-up ML
and explorative data analysis

Tim Kraska
tim_kraska@brown.edu



