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SELECT Market_Cap 
From Companies 
Where Company_Name = “IBM” 

Number of Rows: 0 

Problem:  
Entity Resolution 

Company_Name	
   Address	
   Market	
  Cap	
  

Google	
   Googleplex,	
  Mtn.	
  View	
  CA	
   $210Bn	
  

Intl.	
  Business	
  Machines	
   Armonk,	
  NY	
   $200Bn	
  

MicrosoS	
   Redmond,	
  WA	
   $250Bn	
  



DB-­‐hard	
  Queries	
  

9	
  

SELECT Market_Cap 
From Companies 
Where Company_Name = “Apple” 

Number of Rows: 0 

Problem:  
Missing Data 

Company_Name	
   Address	
   Market	
  Cap	
  

Google	
   Googleplex,	
  Mtn.	
  View	
  CA	
   $210Bn	
  

Intl.	
  Business	
  Machines	
   Armonk,	
  NY	
   $200Bn	
  

MicrosoS	
   Redmond,	
  WA	
   $250Bn	
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SELECT Image 
From Pictures 
Where Image contains  
“professor with beard” 

Number of Rows: 0 

Problem:  
Missing Intelligence 

DB-­‐hard	
  Queries	
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SELECT Image 
From Pictures 
Where Image contains  
“professor with beard” 
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Problem	
  

•  How	
  to	
  integrate	
  this	
  new	
  resource	
  
“humans”	
  for	
  DB-­‐hard	
  queries	
  

•  How	
  to	
  ensure	
  high-­‐quality	
  results	
  

Contribu1ons	
  

•  CrowdDb	
  Systems	
  
•  Architecture	
  
•  Query	
  language	
  
•  Query	
  execu"on	
  

•  Quality	
  Control	
  for	
  Sets	
  



Queries	
  in	
  the	
  Open	
  World	
  

CREATE CROWD TABLE PEOPLE(name, 
age, picture, beard, occupation)!
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Big	
  Ques1ons	
  

When	
  should	
  we	
  stop	
  asking	
  
ques1ons?	
  
	
  

Can	
  we	
  es1mate	
  query	
  
result	
  set	
  size?	
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•  SELECT	
  name	
  FROM	
  US_States	
  
– Experiment	
  runs	
  on	
  Mechanical	
  Turk	
  
– Avg.	
  “accumula"on	
  curve”	
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Species	
  es"ma"on	
  
•  Sample	
  drawn	
  from	
  a	
  popula"on	
  
–  There	
  are	
  N	
  different	
  types	
  within	
  the	
  popula"on,	
  N	
  
unknown	
  

– Analog:	
  worker	
  answers	
  are	
  samples	
  from	
  item	
  
distribu"on	
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sample	
  Answers	
  

•  Calculate	
  query	
  progress	
  
–  based	
  on	
  es"mate	
  of	
  N	
  
– Use	
  Chao92	
  es"mator,	
  suitable	
  for	
  open-­‐world	
  



Worker	
  behavior:	
  example	
  

•  United	
  Na"ons	
  member	
  countries	
  (192)	
  
– Simulated	
  vs.	
  actual	
  cardinality	
  es"mate	
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…
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#
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(a) Database Sampling (B) Crowd Based Sampling
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W
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Streakers	
  provide	
  a	
  lot	
  of	
  unique	
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Streaker-­‐tolerant	
  es"mator	
  

•  Chao92	
  es"mator	
  
– Non-­‐parametric,	
  “frequency	
  of	
  frequencies”	
  sta"s"c	
  

•  f1	
  =	
  singletons,	
  f2	
  	
  =	
  doubletons,	
  f0	
  	
  =	
  unobserved	
  
•  Uses	
  no"on	
  of	
  sample	
  coverage:	
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IV. STREAKER-TOLERANT COMPLETENESS ESTIMATOR

Our goal is to provide the user with a progress estimate
for an open-world query based on the answers that have been
gathered so far. However, in the last section we demonstrated
how having a crowd of humans enumerate a set creates a
two-layer sampling process, and that the order in which items
arrive depends heavily on different worker behaviors—which
impacts the accuracy of the estimator.

In this section, we extend the Chao92 algorithm to make
the estimator more robust against the impact of individual
workers. We focus our effort mainly on reducing the impact
of streakers and worker arrival, and exclude for now cases for
which we can not make a good prediction, discussed in the
following subsections in more detail. We first introduce the
basic estimator model and Chao92 more formally before we
present our extension that handles streaker impact. Finally,
we evaluate our technique by first proposing a new metric
that incorporates the notions of estimate stability and fast
convergence to the true cardinality, then applying this metric
to measure the effectiveness of our technique using various
use cases in addition to the UN.

A. Basic Estimator Model and F-Statistic

Receiving answers from workers is analogous to drawing
samples from some underlying distribution of unknown size
N ; each answer corresponds to one sample from the item
distribution. We can rephrase the problem as a species esti-
mation problem as follows: The set of HITs received from
AMT is a sample of size n drawn from a population in which
elements can be from N different classes, numbered 1 � N
(N , unknown, is what we seek); c is the number of unique
classes (species) seen in the sample. Let ni be the number of
elements in the sample that belong to class i, with 1 ⇥ i ⇥ N .
Of course some ni = 0 because they have not been observed
in the sample. Let pi be the probability that an element from
class i is selected by a worker,

⇧N
i=1 pi = 1; such a sample

is often described as a multinomial sample [12].
One might try to estimate the underlying distribution

{p1, ..., pN } in order to predict the cardinality N . However,
Burnham and Overton show in [17] that the aggregated
“frequency of frequencies”-statistic (hereon f -statistic) is suf-
ficient for estimating the number of unobserved species for
non-parametric algorithms. The f -statistic captures the relative
frequency of observed classes in the sample. For a population
that can be partitioned into N classes (items), and given a
sample of size n, let fj be the number of classes that have
exactly j members in the sample. Note f1 represents the
“singletons” and f2 the “doubletons”. The goal is to estimate
the cardinality by predicting f0, the number of unseen classes.

B. The Chao92 Estimator

Our technique is based on the Chao92 [14] estimator, which
uses sample coverage to predict N . The sample coverage C is
the sum of the probabilities pi of the observed classes. How-
ever, since the underlying distribution p1...pN is unknown, the

Good-Turing estimator [19] using the f -statistic is used:

Ĉ = 1 � f1/n (1)

Furthermore, the Chao92 estimator attempts to explicitly char-
acterize and incorporate the skew of the underlying distribution
using the coefficient of variance (CV), denoted �, a metric
that can be used to describe the variance in a probability
distribution [14]; we can use the CV to compare the skew of
different class distributions. The CV is defined as the standard
deviation divided by the mean. Given the pi’s (p1 · · · pN )
that describe the probability of the ith class being selected,
with mean p̄ =

⇧
i pi/N = 1/N , the CV is expressed as

� =
�⇧

i(pi � p̄)2/N
⇥1/2 / p̄ [14]. A higher CV indicates

higher variance amongst the pi’s, while a CV of 0 indicates
that each item is equally likely.

The true CV cannot be calculated without knowledge of the
pi’s, so Chao92 uses an estimate �̂ based on the f -statistic:

�̂2 = max
⇤

c
Ĉ

⇧
i i(i � 1)fi

n(n � 1) � 1 , 0
⌅

(2)

The final estimator is then defined as:

N̂chao92 = c

Ĉ
+ n(1 � Ĉ)

Ĉ
�̂2 (3)

Note that if �̂2 = 0 (i.e., indicating a uniform distribution),
the estimator reduces to c/Ĉ.

C. An Estimator for Crowdsourced Enumeration
The Chao92 estimator is heavily influenced by the presence

of rare items in the sample; the coverage estimate Ĉ is
based entirely on the percentage of singleton answers (f1s).
Recall from Section III the different crowd behaviors—many
of them result in rapid arrival of unique answers. When unique
items appear “too quickly”, the estimator interprets this as
a sign the complete set size is larger than it truly is. We
develop an estimator based on Chao92 that ameliorates some
of the overestimation issues caused by an overabundance of
f1 answers.

Most of the dramatic overestimation occurs in the presence
of streakers, i.e., significant skew in the amount of answers
provided by each worker. Notably, problems occur when one
or a few workers contribute substantially more answers than
others, possibly also drawing answers from a different data
distribution. As other workers are not given the opportunity
to provide answers that would subsequently increase the f2s,
f3s, etc. in the sample, Chao92 predicts a full set cardinality
that is too large. Thus our estimator is designed to identify any
worker(s) who are outliers with respect to their contribution
of unique answers in the sample (their f1 answers).

The idea behind making the Chao92 estimator more resilient
against streakers is to alter the f -statistic. The first step is
to identify those workers who are “f1 outliers”. We define
outlier in a traditional sense, two standard deviations outside
the mean of all workers W . To avoid false negatives due to
a true outlier’s influence on the mean and standard deviation,
both statistics are calculated without including the potential

IV. STREAKER-TOLERANT COMPLETENESS ESTIMATOR

Our goal is to provide the user with a progress estimate
for an open-world query based on the answers that have been
gathered so far. However, in the last section we demonstrated
how having a crowd of humans enumerate a set creates a
two-layer sampling process, and that the order in which items
arrive depends heavily on different worker behaviors—which
impacts the accuracy of the estimator.

In this section, we extend the Chao92 algorithm to make
the estimator more robust against the impact of individual
workers. We focus our effort mainly on reducing the impact
of streakers and worker arrival, and exclude for now cases for
which we can not make a good prediction, discussed in the
following subsections in more detail. We first introduce the
basic estimator model and Chao92 more formally before we
present our extension that handles streaker impact. Finally,
we evaluate our technique by first proposing a new metric
that incorporates the notions of estimate stability and fast
convergence to the true cardinality, then applying this metric
to measure the effectiveness of our technique using various
use cases in addition to the UN.

A. Basic Estimator Model and F-Statistic

Receiving answers from workers is analogous to drawing
samples from some underlying distribution of unknown size
N ; each answer corresponds to one sample from the item
distribution. We can rephrase the problem as a species esti-
mation problem as follows: The set of HITs received from
AMT is a sample of size n drawn from a population in which
elements can be from N different classes, numbered 1 � N
(N , unknown, is what we seek); c is the number of unique
classes (species) seen in the sample. Let ni be the number of
elements in the sample that belong to class i, with 1 ⇥ i ⇥ N .
Of course some ni = 0 because they have not been observed
in the sample. Let pi be the probability that an element from
class i is selected by a worker,

⇧N
i=1 pi = 1; such a sample

is often described as a multinomial sample [12].
One might try to estimate the underlying distribution

{p1, ..., pN } in order to predict the cardinality N . However,
Burnham and Overton show in [17] that the aggregated
“frequency of frequencies”-statistic (hereon f -statistic) is suf-
ficient for estimating the number of unobserved species for
non-parametric algorithms. The f -statistic captures the relative
frequency of observed classes in the sample. For a population
that can be partitioned into N classes (items), and given a
sample of size n, let fj be the number of classes that have
exactly j members in the sample. Note f1 represents the
“singletons” and f2 the “doubletons”. The goal is to estimate
the cardinality by predicting f0, the number of unseen classes.

B. The Chao92 Estimator

Our technique is based on the Chao92 [14] estimator, which
uses sample coverage to predict N . The sample coverage C is
the sum of the probabilities pi of the observed classes. How-
ever, since the underlying distribution p1...pN is unknown, the

Good-Turing estimator [19] using the f -statistic is used:
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Note that if �̂2 = 0 (i.e., indicating a uniform distribution),
the estimator reduces to c/Ĉ.
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The Chao92 estimator is heavily influenced by the presence
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Recall from Section III the different crowd behaviors—many
of them result in rapid arrival of unique answers. When unique
items appear “too quickly”, the estimator interprets this as
a sign the complete set size is larger than it truly is. We
develop an estimator based on Chao92 that ameliorates some
of the overestimation issues caused by an overabundance of
f1 answers.

Most of the dramatic overestimation occurs in the presence
of streakers, i.e., significant skew in the amount of answers
provided by each worker. Notably, problems occur when one
or a few workers contribute substantially more answers than
others, possibly also drawing answers from a different data
distribution. As other workers are not given the opportunity
to provide answers that would subsequently increase the f2s,
f3s, etc. in the sample, Chao92 predicts a full set cardinality
that is too large. Thus our estimator is designed to identify any
worker(s) who are outliers with respect to their contribution
of unique answers in the sample (their f1 answers).

The idea behind making the Chao92 estimator more resilient
against streakers is to alter the f -statistic. The first step is
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  f1	
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Fig. 7. Estimator results on representative UN country and US states experiments

outlier’s f1 count. The f1 count of worker i is compared to
the mean x̄i and the sample standard deviation ⇥̂i:

x̄i =
⇥

⇥j,j �=i

f1(j)
W � 1 ⇥̂i =

⇧⌅⌅⇤
⇥

⇥j,j �=i

(f1(j) � x̄i)2

W � 2 (4)

We create f̃1 from the original f1 by reducing each worker
i’s f1-contribution to fall within 2⇥̂i + x̄i:

f̃1 =
⇥

i

min(f1(i), 2⇥̂i + x̄i) (5)

The final estimator is similar to equation 3 except that it
uses the f̃1 statistic. For example, with a coefficient of variance
�̂2 = 0, it would simplify to:

N̂crowd = cn

n �
�

i min(f1(i), 2⇥̂i + x̄i)
(6)

Although a small adjustment, N̂crowd is more robust against
the impact of streakers than the original Chao92, as we show
in our evaluation next.

D. Experimental Results

We ran over 30,000 HITs on AMT for set enumeration
tasks to evaluate our technique. Several CROWD tables we
experimented with include small and large well-defined sets
like NBA teams, US states, UN member countries, as well as
sets that can truly leverage human perception and experience
like indoor plants with low-light needs, restaurants in San
Francisco serving scallops, slim-fit tuxedos, and ice cream
flavors. Workers were paid $0.01-$0.05 to provide one item
in the result set using the UI shown in Figure 3; they were
allowed to complete multiple tasks if they wanted to submit
more than one answer. In the remainder of this paper we focus
on a subset of the experiments, some with known cardinality
and fixed membership, US states (nine experiment runs) and
UN member countries (five runs), as well as more open ended
queries like plants, restaurants, tuxedos, and ice cream flavors
(one run each).

1) Error Metric: Due to a lack of a good metric to evaluate
estimators with respect to stability and convergence rate, we
developed an error metric � that captures bias (absolute
distance from the true value), as well as the estimator’s time to
convergence and stability. The idea is to weight the magnitude
of the estimator’s bias more as the size of the sample increases.
Let N denote the known true value, and N̂i denote the estimate
after i samples. After n samples, � is defined as:

� =
�n

i=1 |N̂i � N |i�
i

= 2
�n

i=1 |N̂i � N |i
n(n + 1) (7)

A lower � value means a smaller averaged bias and thus,
a better estimate. The weighting renders a harsher penalty
for incorrectness later on than in the beginning, in addition
to penalizing an estimator that takes longer to reach the true
value; this addresses the convergence rate criteria. The error
metric also rewards estimators for staying near the true value.

2) Results: UN and States: We first illustrate how N̂crowd

behaves for a representative set of UN member countries and
US states experiments; we elide the full set for space reasons.
For both experiments the UI from Figure 3 was shown by
CrowdDB to ask for an UN member country, respectively
US state, on AMT for $0.01 cents per task. Figures 7(a-
h) show cardinality estimates as well as the � metric for
the selected experiments. We observed that our estimate has
an improvement over Chao92 for most UN experiments we
performed as Figure 7(a) and (b) show. In UN 1 our estimates
reduces the overestimation of Chao92 that occurred during the
middle of the experiment. In the UN 2 experiment, one streaker
dominated the total answer set at the beginning—a substantial
outlier. Once his contribution was reduced dramatically, the
remaining workers’ answers had significant overlap because
most were enumerating the list of nations alphabetically,
resulting in a low cardinality because of the heavily skewed
data distribution this scenario creates. Recall from the previous
section that the expected behavior of the estimator in this
case is to under-predict. In contrast, the third UN experiment
run had several streakers at the beginning who each had
very different data distributions (i.e., enumerating the list of
nations from different alphabetical start points). While the
heuristic helped level the f1 contribution from these workers,
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Now	
  that	
  we	
  
have	
  the	
  data…	
  

…how	
  do	
  we	
  
analyze	
  it	
  



The	
  Liqle	
  Secret	
  

Machine	
  Learning	
  is	
  like	
  Teenage	
  Sex	
  
-­‐  Everybody	
  talks	
  about	
  it	
  
-­‐  Nobody	
  knows	
  how	
  to	
  do	
  it	
  
-­‐  Everyone	
  thinks	
  everyone	
  else	
  is	
  doing	
  it	
  
-­‐  So	
  everyone	
  claims	
  they	
  are	
  doing	
  it	
  



The	
  Problem	
  

Build	
  a	
  Classifier	
  

What	
  you	
  want	
  to	
  do	
   What	
  you	
  have	
  to	
  do	
  
•  Learn	
  the	
  internals	
  of	
  ML	
  

classifica1on	
  algorithms,	
  sampling,	
  
feature	
  selec1on,	
  X-­‐valida1on,….	
  

•  Poten1ally	
  learn	
  Spark/Hadoop/…	
  
•  Implement	
  3-­‐4	
  algorithms	
  
•  Implement	
  grid-­‐search	
  to	
  find	
  the	
  

right	
  algorithm	
  parameters	
  
•  Implement	
  valida1on	
  algorithms	
  
•  Experiment	
  with	
  different	
  sampling-­‐

sizes,	
  algorithms,	
  features	
  
•  ….	
  

and	
  in	
  the	
  end	
  

Ask	
  For	
  Help	
  



1st Goal: Simplify the use of ML algorithms 
2nd Goal: Make it easier to implement distributed ML algorithms 



	
  A.	
  Talwalkar	
   E.	
  Sparks	
  

Collaborators	
  

and	
  others…..	
  



A	
  Declara"ve	
  Approach	
  to	
  ML	
  

SQL	
   Result	
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  Declara"ve	
  Approach	
  to	
  ML	
  

SQL	
   Result	
   MQL	
   Model	
  



Use	
  Cases	
  

var	
  X	
  =	
  load("als_clinical",	
  2	
  to	
  10)	
  
var	
  y	
  =	
  load("als_clinical",	
  1)	
  
var	
  (fn-­‐model,	
  summary)	
  =	
  top(doClassify(X,	
  y),	
  5min)	
  

var	
  G	
  =	
  loadGraph("twiqer_network")	
  	
  
var	
  hubs-­‐nodes	
  =	
  findTopKDegreeNodes(G,	
  k	
  =	
  1000)	
  	
  
var	
  text-­‐features	
  =	
  textFeaturize(load("twiqer_tweet_data"))	
  	
  
var	
  T-­‐hub	
  =	
  join(hub-­‐nodes,	
  "u-­‐id",	
  text-­‐features,	
  "u-­‐id")	
  
findTopFeatures(T-­‐hub)	
  	
  

Supervised	
  Classifica"on:	
  ALS	
  Predic"on	
  	
  

Unsupervised	
  Feature	
  Extrac"on:	
  Twiqer	
  



Use	
  Cases	
  

var	
  X	
  =	
  load("als_clinical",	
  2	
  to	
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var	
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  =	
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var	
  (fn-­‐model,	
  summary)	
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  5min)	
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  ALS	
  Predic"on	
  	
  



Hints	
  

var	
  X	
  =	
  load("als_clinical",	
  2	
  to	
  10)	
  
var	
  y	
  =	
  load("als_clinical",	
  1)	
  
var	
  (fn-­‐model,	
  summary)	
  =	
  top(doClassify(X,	
  y,	
  SVM),	
  5min)	
  

Supervised	
  Classifica"on:	
  ALS	
  Predic"on	
  	
  



Streaming-­‐like	
  Data	
  Model	
  

Infinite	
  ordered	
  stream	
  of	
  items,	
  being	
  either	
  
models	
  (i.e.,	
  higher-­‐ordered	
  func"ons)	
  or	
  tuples	
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MLI:	
  Machine	
  Learning	
  Interface	
  

•  Shield	
  ML	
  Developers	
  from	
  low-­‐level-­‐details:	
  provide	
  
familiar	
  mathema"cal	
  operators	
  in	
  distributed	
  sewng	
  

•  Physical	
  independence	
  between	
  ML	
  algorithm	
  and	
  run-­‐
"me	
  

•  Ini"al	
  abstrac"ons:	
  MLTable,	
  MLMatrix,	
  MLOpt	
  
•  Current	
  supported	
  run-­‐"mes:	
  

1	
  

TupleWare	
  



MLTable	
  

•  Flexibility	
  when	
  loading	
  
data	
  	
  
–  e.g.,	
  CSV,JSON,XML	
  	
  
–  Heterogeneous	
  data	
  across	
  
columns	
  	
  

– Missing	
  Data	
  	
  
–  Feature	
  extrac"on	
  	
  

•  Common	
  Interface	
  	
  
•  Supports	
  MapReduce	
  and	
  	
  
Rela"onal	
  Operators	
  

•  Inspired	
  by	
  DataFrames	
  (R)	
  
and	
  Pandas	
  (Python)	
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MLSubMatrix	
  

•  Linear	
  algebra	
  on	
  local	
  
par11ons	
  
–  E.g.,matrix-­‐vector	
  
opera"ons	
  for	
  mini-­‐
batch	
  logis"c	
  regression	
  

–  E.g.,	
  solving	
  linear	
  
systems	
  of	
  equa"ons	
  for	
  
Alterna"ng	
  Least	
  
Squares	
  

•  Sparse	
  and	
  Dense	
  
Matrix	
  Support	
  

MLSubMatrix

✦ Linear%algebra%on%local%parAAons
✦ E.g.,$matrixFvector$opera2ons$for$

miniFbatch$logis2c$regression
✦ E.g.,$solving$linear$system$of$equa2ons$

for$Alterna2ng$Least$Squares

✦ Sparse%and%Dense%Matrix%Support



MLSolve	
  

•  Distributed	
  
implementa1ons	
  of	
  
common	
  op1miza1on	
  
pa_erns	
  
–  E.g.,	
  Stochas"c-­‐Gradient-­‐
Descent:	
  Applicable	
  to	
  
summable	
  ML	
  losses	
  

–  E.g.,	
  LBFGS:	
  An	
  
approximate	
  2nd	
  order	
  
op"miza"on	
  method	
  

–  E.g.,	
  ADMM:	
  
Decomposi"on	
  /	
  
coordina"on	
  procedure	
  

MLSolve

✦ Distributed%implementaAons%of%
common%opAmizaAon%paZerns

✦ E.g.,$Stochas2c$Gradient$Descent:$
Applicable$to$summable$ML$losses

✦ E.g.,$LBFGS:$An$approximate$2ndF
order$op2miza2on$method$

✦ E.g.,$ADMM:$Decomposi2on$/$
coordina2on$procedure
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Binders	
  Full	
  of	
  Algorithms	
  

Implementa1on	
  
On	
  top	
  of	
  MLI	
  	
  
(with	
  op"miza"on	
  hints)	
  

Contract	
  
•  Type	
  (e.g.,	
  classifica"on)	
  
•  Parameters	
  
•  Run"me	
  (e.g.,	
  O(n))	
  
•  Input-­‐Specifica"on	
  
•  Output-­‐Specifica"on	
  
•  …	
  

ML Developer

+	
  

2	
  



Today:	
  Half-­‐Full	
  Binders	
  
•  Regression:	
  Linear	
  Regression	
  (+Lasso,	
  Ridge)	
  	
  
•  Classifica1on:	
  Logis"c	
  Regression,	
  Linear	
  SVM	
  (+L1,	
  L2),	
  
Mul"nomial	
  Regression,	
  [Naïve	
  Bayes,	
  Decision	
  Trees]	
  	
  

•  Collabora1ve	
  Filtering:	
  Alterna"ng	
  Least	
  Squares,	
  [DFC]	
  	
  
•  Clustering:	
  K-­‐Means,	
  [DP-­‐Means]	
  
•  Op1miza1on	
  Primi1ves:	
  SGD,	
  Parallel	
  Gradient,	
  [L-­‐BFGS,	
  
ADMM,	
  Adagrad]	
  

•  Feature	
  Extrac1on:	
  [PCA],	
  N-­‐grams,	
  feature	
  cleaning	
  
normaliza"on	
  

•  Other	
  tools:	
  Cross	
  Valida"on,	
  Evalua"on	
  Metrics	
  
•  Released	
  as	
  part	
  of	
  Spark	
  and	
  MLlib	
  



Example:	
  Alterna"ng	
  Least	
  Squares	
  	
  

System	
  	
   Lines	
  of	
  Code	
  	
  

Matlab	
  	
   20	
  	
  

Mahout	
  	
   865	
  	
  

GraphLab	
  	
   383	
  	
  

MLI	
  	
   32	
  	
  

MLbase GraphLab Mahout Matlab−mex
0
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2 x 104
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1 Machine
4 Machines
9 Machines
16 Machines
25 Machines



ML Developer

Meta-Data

Statistics

User

Declarative 
ML Task 

ML Contract + 
Code

Master Server

….

result 
(e.g., fn-model & summary)

COML
(Optimizer)

Parser

Executor/Monitoring

Binders of 
Algorithms

Runtime Runtime Runtime Runtime

LLP

PLP

M
aster

MLbase	
  Architecture	
  

Binders	
  full	
  of	
  
algorithms	
  
allows	
  to	
  add	
  	
  
more	
  
operators	
  	
  

Sta1s1cs	
  
about	
  algorithms	
  
and	
  	
  data	
  

Adap1ve	
  
Op1mizer	
  
es"mates	
  run-­‐
"me	
  and	
  quality	
  
improvement	
  

MLI	
  
Interface	
  to	
  simplify	
  
implemen"ng	
  distr.	
  
ML	
  algorithms	
  

1	
  

2	
  

3	
  

3	
  



var	
  X	
  =	
  load("als_clinical",2	
  to	
  10)	
  
var	
  y	
  =	
  load("als_clinical",	
  1)	
  	
  
var	
  (fn-­‐model,	
  summary)	
  =	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  top(doClassify(X,	
  y),	
  10min)	
  

MQL	
  

Op"miza"on	
  3	
  

standard feature 
normalizer

create 10-folds

cross 
validation

folds

(X'', y'')

SVM
kernel: RBF

λ=10⁶   σ = 1/d ⨉ 10⁶ 

(model-params, 
cross-validation-summary)

top-1

train model

calculate 
misclassification 

rate

(fn-model, summary)

(X, y)

….

cross 
validation

SVM
kernel: RBF

λ=10³   σ= 1/d ⨉ 10⁶

cross 
validation

AdaBoost
rounds = 20

baseline-check: 
nearest neighbor

baseline-check: 
most common 

label

(model-params, 
cross-validation-summary)

fn-model

load (als_clinical)

down-sample 10%

(X, y)

(X', y')

store 
normalized folds

fn-model

Execu1on	
  Plan	
  



1. Return	
  meaningful	
  results	
  
2. Op"mize	
  the	
  whole	
  
processing	
  pipeline	
  

3. Op"mize	
  quality	
  and	
  1me	
  
simultaneously	
  

Op"miza"on	
  Goals	
  



Current	
  Op"miza"on	
  Approach	
  

Idea:	
  3-­‐Step	
  Process	
  

Expand	
  
(Avoid	
  pi|alls)	
  	
  

Candidate	
  
Genera"on	
  
(Quality)	
  

Physical	
  
Op"miza"on	
  

(Speed)	
  



var	
  X	
  =	
  load("als_clinical",2	
  to	
  10)	
  
var	
  y	
  =	
  load("als_clinical",	
  1)	
  	
  
var	
  (fn-­‐model,	
  summary)	
  =	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  top(doClassify(X,	
  y),	
  10min)	
  

(1)	
  MQL	
  

Op"miza"on	
  
(2)	
  Generic	
  Logical	
  Plan	
  

grid-search

configure model

train model

down-sample

model/data 
interpretation

(X', y')

load (als_clinical)

SVM Adaboost

RBF linear stumps

regularization rounds

technique

kernel

params

...

...

...

(fn-model, summary)

down-sample

(X, y)

originalfeaturization ...normalizedbin

(X, y)

fn-model

cross-validate

top-1

fn-model

summary

3	
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Op"miza"on	
  
(2)	
  Generic	
  Logical	
  Plan	
  

standard feature 
normalizer

create 10-folds

cross 
validation

folds

(X'', y'')

SVM
kernel: RBF

λ=10⁶   σ = 1/d ⨉ 10⁶ 

(model-params, 
cross-validation-summary)

top-1

train model

calculate 
misclassification 

rate

(fn-model, summary)

(X, y)

….

cross 
validation

SVM
kernel: RBF

λ=10³   σ= 1/d ⨉ 10⁶

cross 
validation

AdaBoost
rounds = 20

baseline-check: 
nearest neighbor

baseline-check: 
most common 

label

(model-params, 
cross-validation-summary)

fn-model

load (als_clinical)

down-sample 10%

(X, y)

(X', y')

store 
normalized folds

fn-model

(3)	
  Op1mized	
  Plan	
  

grid-search

configure model

train model

down-sample

model/data 
interpretation

(X', y')

load (als_clinical)

SVM Adaboost

RBF linear stumps

regularization rounds

technique

kernel

params

...

...

...

(fn-model, summary)

down-sample

(X, y)

originalfeaturization ...normalizedbin

(X, y)

fn-model

cross-validate

top-1

fn-model

summary



DB	
  Op"mizer	
  meets	
  ML	
  Parameter	
  Tuning	
  
More	
  than	
  Grid-­‐Search,	
  more	
  than	
  Rela"onal	
  Query	
  
Op"miza"on	
  
MLbase	
  cost-­‐based	
  op"miza"on:	
  	
  
	
   	
  Quality	
  &	
  Time	
  (=budget)	
  

	
  •  Considers	
  algorithms,	
  system	
  techniques	
  and	
  best	
  
prac1ce	
  workflows	
  together	
  

	
  •  Sta1s1cs	
  about	
  data	
  and	
  algorithms	
  	
  
à	
  Hope	
  to	
  find	
  strong	
  correla"on	
  between	
  data	
  sta"s"cs	
  and	
  
the	
  quality	
  of	
  an	
  algorithm	
  	
  

•  Op"miza"on	
  across	
  steps	
  (e.g.,	
  cleaning,	
  feature	
  extrac"on,	
  
classifica"on,…)	
  

•  Robustness/Avoiding	
  Overfiing	
  &	
  Hypothesis	
  Pi?all	
  (messing	
  
up	
  quality	
  is	
  worse	
  than	
  "me	
  in	
  tradi"onal	
  query	
  op"miza"on)	
  



Possible	
  Op"miza"ons	
  (classifica"on)	
  

standard feature 
normalizer

create 10-folds

cross 
validation

folds

(X'', y'')

SVM
kernel: RBF

λ=10⁶   σ = 1/d ⨉ 10⁶ 

(model-params, 
cross-validation-summary)

top-1

train model

calculate 
misclassification 

rate

(fn-model, summary)

(X, y)

….

cross 
validation

SVM
kernel: RBF

λ=10³   σ= 1/d ⨉ 10⁶

cross 
validation

AdaBoost
rounds = 20

baseline-check: 
nearest neighbor

baseline-check: 
most common 

label

(model-params, 
cross-validation-summary)

fn-model

load (als_clinical)

down-sample 10%

(X, y)

(X', y')

store 
normalized folds

fn-model

Rela1onal	
  Op1miza1ons	
  (Top-­‐K	
  Pushdown,	
  Join-­‐Ordering,…)	
  

Sta1c	
  ML	
  Selec1on	
  Rules	
  
•  Imbalance	
  of	
  labels	
  
•  SVMs	
  are	
  more	
  sensi"ve	
  to	
  the	
  scale-­‐parameter	
  than	
  

AdaBoost	
  to	
  rounds	
  
•  If	
  SVM	
  à	
  normalize	
  data	
  between	
  [-­‐1,	
  1]	
  
•  If	
  data	
  contains	
  outliers	
  à	
  pre-­‐clean	
  data	
  or	
  forego	
  

AdaBoost	
  
•  …	
  

Run-­‐Time	
  Op1miza1on	
  Rules	
  
•  Caching:	
  If	
  2nd	
  run	
  and	
  determinis"c,	
  start	
  with	
  previously	
  

most	
  successful	
  model	
  	
  
•  Set	
  sample-­‐size	
  to	
  fit	
  Input-­‐Data	
  as	
  well	
  as	
  intermediate	
  

result	
  in	
  memory	
  
•  Par""on	
  data	
  according	
  to	
  cross-­‐valida"on	
  
•  …	
  

Cost-­‐based	
  Op1miza1on	
  Rules	
  
•  Materializa"on	
  and	
  indexing	
  
•  Expected	
  quality	
  improvement	
  based	
  on	
  the	
  history	
  
•  Consider	
  cost	
  of	
  pre-­‐cleaning,	
  normaliza"on,	
  algorithm	
  

complexity,…	
  
•  …	
  



Why	
  Op"mize?	
  Pi|alls	
  

38/40	
  =	
  95%	
  

38/40	
  =	
  95%	
  

A	
  
B	
  

A	
   B	
  



Why	
  Op"mize?	
  
Quality	
  

SVM AdaBoost
original scaled

a1a 82.93 82.93 82.87
australian 85.22 85.51 86.23

breast 70.13 97.22 96.48
diabetes 76.44 77.61 76.17
fourclass 100.00 99.77 91.19
splice 88.00 87.60 91.20

Figure 3: Classifier accuracy using SVM with an RBF kernel and using AdaBoost

3.6.3 Preliminary Results

To demonstrate the possible advantages of an optimizer just for selecting among di↵erent ML
algorithms even without considering the system aspect, we implemented a prototype using two
algorithms: SVM and AdaBoost. For both algorithms, we used publicly available implementations:
LIBSVM [33] for SVM and the ML AdaBoost Toolbox [1] for AdaBoost. We evaluated the op-
timizer for a classification task similar to the one in Figure 2 with 6 datasets from the LIBSVM
website: ‘a1a’, ‘australian’, ‘breast-cancer’, ‘diabetes’, ‘fourclass’, and ‘splice’. To better visualize
the impact of finding the best ML model, we performed a full grid search over a fixed set of algo-
rithm parameters, i.e., number of rounds (r) for AdaBoost and regularization (�) and RBF scale
(�) parameters for SVM. Specifically, we tested r = {25, 50, 100, 200}, � = {10�6

, 10�3
, 1, 103, 106},

and � = 1
d ⇥ {10�6

, 10�3
, 1, 103, 106}, where d is the number of features in the dataset. For each

algorithm, set of features and parameter settings, we performed 5-fold cross validation, and report
the average results across the held-out fold.

Table 3 shows the best accuracy after tuning the parameters using grid search for the di↵erent
datasets and algorithms, with and without scaling the features (the best combination is marked in
bold). The results show first that there is no dominant combination for all datasets. Sometimes
AdaBoost outperforms SVM, sometimes scaling the features helps, sometimes it does not.

Next we turn to understanding the search problem for the parameters themselves, depicted in
Figures 4(a) and 4(b). Figure 4(a) shows, for fixed regularization �, the impact of the � parameter
in the RBF kernel on the accuracy, whereas Figure 4(b) visualizes the accuracy for varying the
number of rounds r for AdaBoost. As shown in Figure 4(a), the choice of � in the SVM problem
clearly has a huge impact on quality; automatically selecting � is important. On the other hand,
for the same datasets, it appears that the number of rounds in AdaBoost is not quite as significant
once r � 25 (shown in Figure 4(b)). Hence, an optimizer might decide to initially use AdaBoost -
without scaling and with a fixed round parameter - in order to quickly provide the user with a first
classifier. Afterwards, the system might explore SVMs with scaled features to improve the model,
before extending the search space to the remaining combinations.

The general accuracy of algorithms is just one of the aspects an optimizer may take into account.
Statistics about the dataset itself, di↵erent data layouts, algorithm speed and parallel execution
strategies (as described in the next section) are just a few additional dimensions the optimizer may
exploit to improve the learning process. In this project, we will evaluate these freedoms of choice
and build the foundation for cost-based (query) optimization for machine learning.
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Figure 4: Parameter Impact

4 Related Work

COML is not the first system trying to make machine learning more accessible, but it is the first to
free users from algorithm choices and to automatically optimize for distributed execution. Probably
most related to COML are Weka [4], MADLib [47], and Mahout [3]. Weka is a collection of ML
tools for data mining that simplifies their usage by providing a simple UI. Weka, however, requires
expert knowledge to choose and configure the ML algorithm and is a single node system. On the
database and distributed side, Mahout’s goal is to build a scalable ML library on top of Hadoop,
while MADLib provides an ML library for relational database systems. Neither system addresses
the (di�cult but necessary) challenge of optimizing the learning algorithms.

Google Predict [2] is Google’s proprietary web-service for prediction problems, but restricts the
maximum training data-size to 250MB. In [18], the authors make the case that databases should
natively support predictive models and present a first prototype called Longview. We extend this
vision by supporting all kinds of ML algorithms, not just predictive models. Furthermore, the
focus of this project is on the optimization for ML instead of the language integration within the
relational model.

Recently, there have been e↵orts to build distributed run-times for more advanced analytical tasks.
For example, Hyracks [27], HaLoop [32] and AMPLab’s Spark [72, 6] have special iterative in-
memory operations to better support ML algorithms. As mentioned earlier, the goal of this project
is not on inventing a new run-time for machine learning; instead we will use Spark.

SystemML [46] proposes an R-like language and shows how it can be optimized and compiled down
to MapReduce. However, SystemML tries to support ML experts to develop e�cient distributed
algorithms and does not aim at simplifying the use of ML, for example, by automatically tuning the
training step. Still, the ideas of SystemML are compelling and we might leverage them as part of our
physical plan optimization. In [41], the authors show how many ML algorithms can be expressed as
a relational-friendly convex-optimization problem, whereas the authors of [70] present techniques
to optimize inference algorithms in a probabilistic DBMS. We leverage these techniques in our
run-time, but our system aims beyond a single machine and extends the presented optimization
techniques.

This project builds on the strong foundation of declarative languages and query optimization.
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Why	
  Op"mize?	
  
	
  Speed	
  

•  Running	
  1	
  algorithm	
  tends	
  to	
  be	
  I/O	
  bound	
  
•  Idea:	
  train	
  in	
  parallel	
  with	
  different	
  algorithms	
  
and	
  parameters	
  à	
  Similar	
  to	
  shared	
  cursors	
  
in	
  DB-­‐world	
  

•  Ques"ons:	
  
– How	
  many	
  models?	
  	
  
à	
  How	
  to	
  make	
  it	
  cache-­‐aware	
  

–  Impact	
  of	
  sampling?	
  
– How	
  to	
  leverage	
  modern	
  CPUs,	
  in	
  par"cular	
  
vectoriza"on	
  and	
  CPU	
  pipelining?	
  



Direc"on	
  
•  Released:	
  

–  MLI	
  interface	
  
–  Half-­‐full	
  binders	
  as	
  part	
  of	
  Spark	
  
–  Some	
  simple	
  feature	
  extractors	
  
–  (End-­‐to-­‐end	
  use	
  cases)	
  

•  Working	
  on:	
  
–  Op"miza"on	
  techniques	
  	
  
–  Cost-­‐based	
  op"mizer	
  
–  Unified	
  language	
  for	
  end	
  users	
  and	
  ML	
  developers	
  
–  Advanced	
  ML	
  capabili"es:	
  Time-­‐series	
  algorithms,	
  graphical	
  
models,	
  advanced	
  op"miza"ons,	
  online	
  updates,	
  sampling	
  for	
  
efficiency	
  

–  Integra"on	
  into	
  TupleWare:	
  High-­‐Performance	
  analy"c	
  pla|orm	
  
–  Visualiza"on	
  
	
  



MLBase	
  -­‐	
  Summary	
  

•  MLbase	
  is	
  a	
  first	
  declara1ve	
  machine-­‐learning	
  
system	
  

•  It	
  simplifies	
  ML	
  in	
  the	
  same	
  way	
  as	
  databases	
  
simplify	
  data	
  management	
  

•  Teaser:	
  TupleWare	
  will	
  integrate	
  Mlbase	
  
and	
  leverage	
  ideas	
  from	
  programming	
  
languages	
  to	
  significantly	
  speed-­‐up	
  ML	
  
and	
  explora"ve	
  data	
  analysis	
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