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1	  PetaByte	  reported	  every	  second	  by	  LHC	  	  



My	  Hidden	  Mo1va1on	  
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DB-‐hard	  Queries	  
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SELECT Market_Cap 
From Companies 
Where Company_Name = “IBM” 

Number of Rows: 0 

Problem:  
Entity Resolution 

Company_Name	   Address	   Market	  Cap	  

Google	   Googleplex,	  Mtn.	  View	  CA	   $210Bn	  

Intl.	  Business	  Machines	   Armonk,	  NY	   $200Bn	  

MicrosoS	   Redmond,	  WA	   $250Bn	  



DB-‐hard	  Queries	  
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SELECT Market_Cap 
From Companies 
Where Company_Name = “Apple” 

Number of Rows: 0 

Problem:  
Missing Data 

Company_Name	   Address	   Market	  Cap	  

Google	   Googleplex,	  Mtn.	  View	  CA	   $210Bn	  

Intl.	  Business	  Machines	   Armonk,	  NY	   $200Bn	  

MicrosoS	   Redmond,	  WA	   $250Bn	  
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SELECT Image 
From Pictures 
Where Image contains  
“professor with beard” 

Number of Rows: 0 

Problem:  
Missing Intelligence 

DB-‐hard	  Queries	  



Easy	  Queries	  

11	  

SELECT Image 
From Pictures 
Where Image contains  
“professor with beard” 



Micro-‐Task	  CrowdSourcing	  
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Overview	  
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Problem	  

•  How	  to	  integrate	  this	  new	  resource	  
“humans”	  for	  DB-‐hard	  queries	  

•  How	  to	  ensure	  high-‐quality	  results	  

Contribu1ons	  

•  CrowdDb	  Systems	  
•  Architecture	  
•  Query	  language	  
•  Query	  execu"on	  

•  Quality	  Control	  for	  Sets	  



Queries	  in	  the	  Open	  World	  

CREATE CROWD TABLE PEOPLE(name, 
age, picture, beard, occupation)!
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Big	  Ques1ons	  

When	  should	  we	  stop	  asking	  
ques1ons?	  
	  

Can	  we	  es1mate	  query	  
result	  set	  size?	  

15	  



Querying	  the	  crowd	  
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•  SELECT	  name	  FROM	  US_States	  
– Experiment	  runs	  on	  Mechanical	  Turk	  
– Avg.	  “accumula"on	  curve”	  

0 50 100 150 200 250 300

0
10

20
30

40
50

States: unique items

# Answers (HITs)

av
g 

# 
un

iq
ue

 a
ns

we
rs

#	  responses	  

	  
Avg	  #	  unique	  
answers	  

	  
	  



Species	  es"ma"on	  
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Species	  es"ma"on	  
•  Sample	  drawn	  from	  a	  popula"on	  
–  There	  are	  N	  different	  types	  within	  the	  popula"on,	  N	  
unknown	  

– Analog:	  worker	  answers	  are	  samples	  from	  item	  
distribu"on	  

N	  

pr
ob

ab
ili
ty
	  

18	  

sample	  Answers	  

•  Calculate	  query	  progress	  
–  based	  on	  es"mate	  of	  N	  
– Use	  Chao92	  es"mator,	  suitable	  for	  open-‐world	  



Worker	  behavior:	  example	  

•  United	  Na"ons	  member	  countries	  (192)	  
– Simulated	  vs.	  actual	  cardinality	  es"mate	  

19	  
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Worker	  behavior	  
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“Streakers”[Heer10]	  
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Streakers	  provide	  a	  lot	  of	  unique	  answers	  



Streaker-‐tolerant	  es"mator	  

•  Chao92	  es"mator	  
– Non-‐parametric,	  “frequency	  of	  frequencies”	  sta"s"c	  

•  f1	  =	  singletons,	  f2	  	  =	  doubletons,	  f0	  	  =	  unobserved	  
•  Uses	  no"on	  of	  sample	  coverage:	  	  

22	  

IV. STREAKER-TOLERANT COMPLETENESS ESTIMATOR

Our goal is to provide the user with a progress estimate
for an open-world query based on the answers that have been
gathered so far. However, in the last section we demonstrated
how having a crowd of humans enumerate a set creates a
two-layer sampling process, and that the order in which items
arrive depends heavily on different worker behaviors—which
impacts the accuracy of the estimator.

In this section, we extend the Chao92 algorithm to make
the estimator more robust against the impact of individual
workers. We focus our effort mainly on reducing the impact
of streakers and worker arrival, and exclude for now cases for
which we can not make a good prediction, discussed in the
following subsections in more detail. We first introduce the
basic estimator model and Chao92 more formally before we
present our extension that handles streaker impact. Finally,
we evaluate our technique by first proposing a new metric
that incorporates the notions of estimate stability and fast
convergence to the true cardinality, then applying this metric
to measure the effectiveness of our technique using various
use cases in addition to the UN.

A. Basic Estimator Model and F-Statistic

Receiving answers from workers is analogous to drawing
samples from some underlying distribution of unknown size
N ; each answer corresponds to one sample from the item
distribution. We can rephrase the problem as a species esti-
mation problem as follows: The set of HITs received from
AMT is a sample of size n drawn from a population in which
elements can be from N different classes, numbered 1 � N
(N , unknown, is what we seek); c is the number of unique
classes (species) seen in the sample. Let ni be the number of
elements in the sample that belong to class i, with 1 ⇥ i ⇥ N .
Of course some ni = 0 because they have not been observed
in the sample. Let pi be the probability that an element from
class i is selected by a worker,

⇧N
i=1 pi = 1; such a sample

is often described as a multinomial sample [12].
One might try to estimate the underlying distribution

{p1, ..., pN } in order to predict the cardinality N . However,
Burnham and Overton show in [17] that the aggregated
“frequency of frequencies”-statistic (hereon f -statistic) is suf-
ficient for estimating the number of unobserved species for
non-parametric algorithms. The f -statistic captures the relative
frequency of observed classes in the sample. For a population
that can be partitioned into N classes (items), and given a
sample of size n, let fj be the number of classes that have
exactly j members in the sample. Note f1 represents the
“singletons” and f2 the “doubletons”. The goal is to estimate
the cardinality by predicting f0, the number of unseen classes.

B. The Chao92 Estimator

Our technique is based on the Chao92 [14] estimator, which
uses sample coverage to predict N . The sample coverage C is
the sum of the probabilities pi of the observed classes. How-
ever, since the underlying distribution p1...pN is unknown, the

Good-Turing estimator [19] using the f -statistic is used:

Ĉ = 1 � f1/n (1)

Furthermore, the Chao92 estimator attempts to explicitly char-
acterize and incorporate the skew of the underlying distribution
using the coefficient of variance (CV), denoted �, a metric
that can be used to describe the variance in a probability
distribution [14]; we can use the CV to compare the skew of
different class distributions. The CV is defined as the standard
deviation divided by the mean. Given the pi’s (p1 · · · pN )
that describe the probability of the ith class being selected,
with mean p̄ =

⇧
i pi/N = 1/N , the CV is expressed as

� =
�⇧

i(pi � p̄)2/N
⇥1/2 / p̄ [14]. A higher CV indicates

higher variance amongst the pi’s, while a CV of 0 indicates
that each item is equally likely.

The true CV cannot be calculated without knowledge of the
pi’s, so Chao92 uses an estimate �̂ based on the f -statistic:

�̂2 = max
⇤

c
Ĉ

⇧
i i(i � 1)fi

n(n � 1) � 1 , 0
⌅

(2)

The final estimator is then defined as:

N̂chao92 = c

Ĉ
+ n(1 � Ĉ)

Ĉ
�̂2 (3)

Note that if �̂2 = 0 (i.e., indicating a uniform distribution),
the estimator reduces to c/Ĉ.

C. An Estimator for Crowdsourced Enumeration
The Chao92 estimator is heavily influenced by the presence

of rare items in the sample; the coverage estimate Ĉ is
based entirely on the percentage of singleton answers (f1s).
Recall from Section III the different crowd behaviors—many
of them result in rapid arrival of unique answers. When unique
items appear “too quickly”, the estimator interprets this as
a sign the complete set size is larger than it truly is. We
develop an estimator based on Chao92 that ameliorates some
of the overestimation issues caused by an overabundance of
f1 answers.

Most of the dramatic overestimation occurs in the presence
of streakers, i.e., significant skew in the amount of answers
provided by each worker. Notably, problems occur when one
or a few workers contribute substantially more answers than
others, possibly also drawing answers from a different data
distribution. As other workers are not given the opportunity
to provide answers that would subsequently increase the f2s,
f3s, etc. in the sample, Chao92 predicts a full set cardinality
that is too large. Thus our estimator is designed to identify any
worker(s) who are outliers with respect to their contribution
of unique answers in the sample (their f1 answers).

The idea behind making the Chao92 estimator more resilient
against streakers is to alter the f -statistic. The first step is
to identify those workers who are “f1 outliers”. We define
outlier in a traditional sense, two standard deviations outside
the mean of all workers W . To avoid false negatives due to
a true outlier’s influence on the mean and standard deviation,
both statistics are calculated without including the potential
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Recall from Section III the different crowd behaviors—many
of them result in rapid arrival of unique answers. When unique
items appear “too quickly”, the estimator interprets this as
a sign the complete set size is larger than it truly is. We
develop an estimator based on Chao92 that ameliorates some
of the overestimation issues caused by an overabundance of
f1 answers.

Most of the dramatic overestimation occurs in the presence
of streakers, i.e., significant skew in the amount of answers
provided by each worker. Notably, problems occur when one
or a few workers contribute substantially more answers than
others, possibly also drawing answers from a different data
distribution. As other workers are not given the opportunity
to provide answers that would subsequently increase the f2s,
f3s, etc. in the sample, Chao92 predicts a full set cardinality
that is too large. Thus our estimator is designed to identify any
worker(s) who are outliers with respect to their contribution
of unique answers in the sample (their f1 answers).

The idea behind making the Chao92 estimator more resilient
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•  Adding	  streaker-‐tolerance	  
–  Es"mator	  over-‐predicts	  cardinality	  with	  abundance	  of	  
unique	  answers	  (f1)	  

–  Remove	  f1	  outliers	  
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Fig. 7. Estimator results on representative UN country and US states experiments

outlier’s f1 count. The f1 count of worker i is compared to
the mean x̄i and the sample standard deviation ⇥̂i:

x̄i =
⇥

⇥j,j �=i

f1(j)
W � 1 ⇥̂i =

⇧⌅⌅⇤
⇥

⇥j,j �=i

(f1(j) � x̄i)2

W � 2 (4)

We create f̃1 from the original f1 by reducing each worker
i’s f1-contribution to fall within 2⇥̂i + x̄i:

f̃1 =
⇥

i

min(f1(i), 2⇥̂i + x̄i) (5)

The final estimator is similar to equation 3 except that it
uses the f̃1 statistic. For example, with a coefficient of variance
�̂2 = 0, it would simplify to:

N̂crowd = cn

n �
�

i min(f1(i), 2⇥̂i + x̄i)
(6)

Although a small adjustment, N̂crowd is more robust against
the impact of streakers than the original Chao92, as we show
in our evaluation next.

D. Experimental Results

We ran over 30,000 HITs on AMT for set enumeration
tasks to evaluate our technique. Several CROWD tables we
experimented with include small and large well-defined sets
like NBA teams, US states, UN member countries, as well as
sets that can truly leverage human perception and experience
like indoor plants with low-light needs, restaurants in San
Francisco serving scallops, slim-fit tuxedos, and ice cream
flavors. Workers were paid $0.01-$0.05 to provide one item
in the result set using the UI shown in Figure 3; they were
allowed to complete multiple tasks if they wanted to submit
more than one answer. In the remainder of this paper we focus
on a subset of the experiments, some with known cardinality
and fixed membership, US states (nine experiment runs) and
UN member countries (five runs), as well as more open ended
queries like plants, restaurants, tuxedos, and ice cream flavors
(one run each).

1) Error Metric: Due to a lack of a good metric to evaluate
estimators with respect to stability and convergence rate, we
developed an error metric � that captures bias (absolute
distance from the true value), as well as the estimator’s time to
convergence and stability. The idea is to weight the magnitude
of the estimator’s bias more as the size of the sample increases.
Let N denote the known true value, and N̂i denote the estimate
after i samples. After n samples, � is defined as:

� =
�n

i=1 |N̂i � N |i�
i

= 2
�n

i=1 |N̂i � N |i
n(n + 1) (7)

A lower � value means a smaller averaged bias and thus,
a better estimate. The weighting renders a harsher penalty
for incorrectness later on than in the beginning, in addition
to penalizing an estimator that takes longer to reach the true
value; this addresses the convergence rate criteria. The error
metric also rewards estimators for staying near the true value.

2) Results: UN and States: We first illustrate how N̂crowd

behaves for a representative set of UN member countries and
US states experiments; we elide the full set for space reasons.
For both experiments the UI from Figure 3 was shown by
CrowdDB to ask for an UN member country, respectively
US state, on AMT for $0.01 cents per task. Figures 7(a-
h) show cardinality estimates as well as the � metric for
the selected experiments. We observed that our estimate has
an improvement over Chao92 for most UN experiments we
performed as Figure 7(a) and (b) show. In UN 1 our estimates
reduces the overestimation of Chao92 that occurred during the
middle of the experiment. In the UN 2 experiment, one streaker
dominated the total answer set at the beginning—a substantial
outlier. Once his contribution was reduced dramatically, the
remaining workers’ answers had significant overlap because
most were enumerating the list of nations alphabetically,
resulting in a low cardinality because of the heavily skewed
data distribution this scenario creates. Recall from the previous
section that the expected behavior of the estimator in this
case is to under-predict. In contrast, the third UN experiment
run had several streakers at the beginning who each had
very different data distributions (i.e., enumerating the list of
nations from different alphabetical start points). While the
heuristic helped level the f1 contribution from these workers,

with	  coefficient	  of	  variance	  =	  0	  	  



Streaker-‐tolerant	  es"mator:	  results	  

•  “UN	  member	  na"ons”	  	  
(run	  1)	  
– Streaker	  during	  the	  
middle	  ameliorated	  
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•  “UN	  member	  na"ons”	  	  
(run	  2)	  
–  Streaker	  at	  beginning	  
–  Other	  workers	  shared	  
skewed	  distribu"on,	  yields	  
low	  cardinality	  es"mate	  



Now	  that	  we	  
have	  the	  data…	  

…how	  do	  we	  
analyze	  it	  



The	  Liqle	  Secret	  

Machine	  Learning	  is	  like	  Teenage	  Sex	  
-‐  Everybody	  talks	  about	  it	  
-‐  Nobody	  knows	  how	  to	  do	  it	  
-‐  Everyone	  thinks	  everyone	  else	  is	  doing	  it	  
-‐  So	  everyone	  claims	  they	  are	  doing	  it	  



The	  Problem	  

Build	  a	  Classifier	  

What	  you	  want	  to	  do	   What	  you	  have	  to	  do	  
•  Learn	  the	  internals	  of	  ML	  

classifica1on	  algorithms,	  sampling,	  
feature	  selec1on,	  X-‐valida1on,….	  

•  Poten1ally	  learn	  Spark/Hadoop/…	  
•  Implement	  3-‐4	  algorithms	  
•  Implement	  grid-‐search	  to	  find	  the	  

right	  algorithm	  parameters	  
•  Implement	  valida1on	  algorithms	  
•  Experiment	  with	  different	  sampling-‐

sizes,	  algorithms,	  features	  
•  ….	  

and	  in	  the	  end	  

Ask	  For	  Help	  



1st Goal: Simplify the use of ML algorithms 
2nd Goal: Make it easier to implement distributed ML algorithms 



	  A.	  Talwalkar	   E.	  Sparks	  

Collaborators	  

and	  others…..	  



A	  Declara"ve	  Approach	  to	  ML	  

SQL	   Result	  
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Use	  Cases	  

var	  X	  =	  load("als_clinical",	  2	  to	  10)	  
var	  y	  =	  load("als_clinical",	  1)	  
var	  (fn-‐model,	  summary)	  =	  top(doClassify(X,	  y),	  5min)	  

var	  G	  =	  loadGraph("twiqer_network")	  	  
var	  hubs-‐nodes	  =	  findTopKDegreeNodes(G,	  k	  =	  1000)	  	  
var	  text-‐features	  =	  textFeaturize(load("twiqer_tweet_data"))	  	  
var	  T-‐hub	  =	  join(hub-‐nodes,	  "u-‐id",	  text-‐features,	  "u-‐id")	  
findTopFeatures(T-‐hub)	  	  

Supervised	  Classifica"on:	  ALS	  Predic"on	  	  

Unsupervised	  Feature	  Extrac"on:	  Twiqer	  
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Hints	  

var	  X	  =	  load("als_clinical",	  2	  to	  10)	  
var	  y	  =	  load("als_clinical",	  1)	  
var	  (fn-‐model,	  summary)	  =	  top(doClassify(X,	  y,	  SVM),	  5min)	  

Supervised	  Classifica"on:	  ALS	  Predic"on	  	  



Streaming-‐like	  Data	  Model	  

Infinite	  ordered	  stream	  of	  items,	  being	  either	  
models	  (i.e.,	  higher-‐ordered	  func"ons)	  or	  tuples	  
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MLI:	  Machine	  Learning	  Interface	  

•  Shield	  ML	  Developers	  from	  low-‐level-‐details:	  provide	  
familiar	  mathema"cal	  operators	  in	  distributed	  sewng	  

•  Physical	  independence	  between	  ML	  algorithm	  and	  run-‐
"me	  

•  Ini"al	  abstrac"ons:	  MLTable,	  MLMatrix,	  MLOpt	  
•  Current	  supported	  run-‐"mes:	  

1	  

TupleWare	  



MLTable	  

•  Flexibility	  when	  loading	  
data	  	  
–  e.g.,	  CSV,JSON,XML	  	  
–  Heterogeneous	  data	  across	  
columns	  	  

– Missing	  Data	  	  
–  Feature	  extrac"on	  	  

•  Common	  Interface	  	  
•  Supports	  MapReduce	  and	  	  
Rela"onal	  Operators	  

•  Inspired	  by	  DataFrames	  (R)	  
and	  Pandas	  (Python)	  	  

38	  



MLSubMatrix	  

•  Linear	  algebra	  on	  local	  
par11ons	  
–  E.g.,matrix-‐vector	  
opera"ons	  for	  mini-‐
batch	  logis"c	  regression	  

–  E.g.,	  solving	  linear	  
systems	  of	  equa"ons	  for	  
Alterna"ng	  Least	  
Squares	  

•  Sparse	  and	  Dense	  
Matrix	  Support	  

MLSubMatrix
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✦ E.g.,$matrixFvector$opera2ons$for$

miniFbatch$logis2c$regression
✦ E.g.,$solving$linear$system$of$equa2ons$
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✦ Sparse%and%Dense%Matrix%Support



MLSolve	  

•  Distributed	  
implementa1ons	  of	  
common	  op1miza1on	  
pa_erns	  
–  E.g.,	  Stochas"c-‐Gradient-‐
Descent:	  Applicable	  to	  
summable	  ML	  losses	  

–  E.g.,	  LBFGS:	  An	  
approximate	  2nd	  order	  
op"miza"on	  method	  

–  E.g.,	  ADMM:	  
Decomposi"on	  /	  
coordina"on	  procedure	  

MLSolve
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Binders	  Full	  of	  Algorithms	  

Implementa1on	  
On	  top	  of	  MLI	  	  
(with	  op"miza"on	  hints)	  

Contract	  
•  Type	  (e.g.,	  classifica"on)	  
•  Parameters	  
•  Run"me	  (e.g.,	  O(n))	  
•  Input-‐Specifica"on	  
•  Output-‐Specifica"on	  
•  …	  

ML Developer

+	  

2	  



Today:	  Half-‐Full	  Binders	  
•  Regression:	  Linear	  Regression	  (+Lasso,	  Ridge)	  	  
•  Classifica1on:	  Logis"c	  Regression,	  Linear	  SVM	  (+L1,	  L2),	  
Mul"nomial	  Regression,	  [Naïve	  Bayes,	  Decision	  Trees]	  	  

•  Collabora1ve	  Filtering:	  Alterna"ng	  Least	  Squares,	  [DFC]	  	  
•  Clustering:	  K-‐Means,	  [DP-‐Means]	  
•  Op1miza1on	  Primi1ves:	  SGD,	  Parallel	  Gradient,	  [L-‐BFGS,	  
ADMM,	  Adagrad]	  

•  Feature	  Extrac1on:	  [PCA],	  N-‐grams,	  feature	  cleaning	  
normaliza"on	  

•  Other	  tools:	  Cross	  Valida"on,	  Evalua"on	  Metrics	  
•  Released	  as	  part	  of	  Spark	  and	  MLlib	  



Example:	  Alterna"ng	  Least	  Squares	  	  

System	  	   Lines	  of	  Code	  	  

Matlab	  	   20	  	  

Mahout	  	   865	  	  

GraphLab	  	   383	  	  

MLI	  	   32	  	  

MLbase GraphLab Mahout Matlab−mex
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var	  X	  =	  load("als_clinical",2	  to	  10)	  
var	  y	  =	  load("als_clinical",	  1)	  	  
var	  (fn-‐model,	  summary)	  =	  	  
	  	  	  	  	  	  	  	  top(doClassify(X,	  y),	  10min)	  
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1. Return	  meaningful	  results	  
2. Op"mize	  the	  whole	  
processing	  pipeline	  

3. Op"mize	  quality	  and	  1me	  
simultaneously	  

Op"miza"on	  Goals	  



Current	  Op"miza"on	  Approach	  

Idea:	  3-‐Step	  Process	  

Expand	  
(Avoid	  pi|alls)	  	  

Candidate	  
Genera"on	  
(Quality)	  

Physical	  
Op"miza"on	  

(Speed)	  



var	  X	  =	  load("als_clinical",2	  to	  10)	  
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Op"miza"on	  
(2)	  Generic	  Logical	  Plan	  
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(3)	  Op1mized	  Plan	  
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DB	  Op"mizer	  meets	  ML	  Parameter	  Tuning	  
More	  than	  Grid-‐Search,	  more	  than	  Rela"onal	  Query	  
Op"miza"on	  
MLbase	  cost-‐based	  op"miza"on:	  	  
	   	  Quality	  &	  Time	  (=budget)	  

	  •  Considers	  algorithms,	  system	  techniques	  and	  best	  
prac1ce	  workflows	  together	  

	  •  Sta1s1cs	  about	  data	  and	  algorithms	  	  
à	  Hope	  to	  find	  strong	  correla"on	  between	  data	  sta"s"cs	  and	  
the	  quality	  of	  an	  algorithm	  	  

•  Op"miza"on	  across	  steps	  (e.g.,	  cleaning,	  feature	  extrac"on,	  
classifica"on,…)	  

•  Robustness/Avoiding	  Overfiing	  &	  Hypothesis	  Pi?all	  (messing	  
up	  quality	  is	  worse	  than	  "me	  in	  tradi"onal	  query	  op"miza"on)	  



Possible	  Op"miza"ons	  (classifica"on)	  
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Rela1onal	  Op1miza1ons	  (Top-‐K	  Pushdown,	  Join-‐Ordering,…)	  

Sta1c	  ML	  Selec1on	  Rules	  
•  Imbalance	  of	  labels	  
•  SVMs	  are	  more	  sensi"ve	  to	  the	  scale-‐parameter	  than	  

AdaBoost	  to	  rounds	  
•  If	  SVM	  à	  normalize	  data	  between	  [-‐1,	  1]	  
•  If	  data	  contains	  outliers	  à	  pre-‐clean	  data	  or	  forego	  

AdaBoost	  
•  …	  

Run-‐Time	  Op1miza1on	  Rules	  
•  Caching:	  If	  2nd	  run	  and	  determinis"c,	  start	  with	  previously	  

most	  successful	  model	  	  
•  Set	  sample-‐size	  to	  fit	  Input-‐Data	  as	  well	  as	  intermediate	  

result	  in	  memory	  
•  Par""on	  data	  according	  to	  cross-‐valida"on	  
•  …	  

Cost-‐based	  Op1miza1on	  Rules	  
•  Materializa"on	  and	  indexing	  
•  Expected	  quality	  improvement	  based	  on	  the	  history	  
•  Consider	  cost	  of	  pre-‐cleaning,	  normaliza"on,	  algorithm	  

complexity,…	  
•  …	  



Why	  Op"mize?	  Pi|alls	  

38/40	  =	  95%	  

38/40	  =	  95%	  

A	  
B	  

A	   B	  



Why	  Op"mize?	  
Quality	  

SVM AdaBoost
original scaled

a1a 82.93 82.93 82.87
australian 85.22 85.51 86.23

breast 70.13 97.22 96.48
diabetes 76.44 77.61 76.17
fourclass 100.00 99.77 91.19
splice 88.00 87.60 91.20

Figure 3: Classifier accuracy using SVM with an RBF kernel and using AdaBoost

3.6.3 Preliminary Results

To demonstrate the possible advantages of an optimizer just for selecting among di↵erent ML
algorithms even without considering the system aspect, we implemented a prototype using two
algorithms: SVM and AdaBoost. For both algorithms, we used publicly available implementations:
LIBSVM [33] for SVM and the ML AdaBoost Toolbox [1] for AdaBoost. We evaluated the op-
timizer for a classification task similar to the one in Figure 2 with 6 datasets from the LIBSVM
website: ‘a1a’, ‘australian’, ‘breast-cancer’, ‘diabetes’, ‘fourclass’, and ‘splice’. To better visualize
the impact of finding the best ML model, we performed a full grid search over a fixed set of algo-
rithm parameters, i.e., number of rounds (r) for AdaBoost and regularization (�) and RBF scale
(�) parameters for SVM. Specifically, we tested r = {25, 50, 100, 200}, � = {10�6

, 10�3
, 1, 103, 106},

and � = 1
d ⇥ {10�6

, 10�3
, 1, 103, 106}, where d is the number of features in the dataset. For each

algorithm, set of features and parameter settings, we performed 5-fold cross validation, and report
the average results across the held-out fold.

Table 3 shows the best accuracy after tuning the parameters using grid search for the di↵erent
datasets and algorithms, with and without scaling the features (the best combination is marked in
bold). The results show first that there is no dominant combination for all datasets. Sometimes
AdaBoost outperforms SVM, sometimes scaling the features helps, sometimes it does not.

Next we turn to understanding the search problem for the parameters themselves, depicted in
Figures 4(a) and 4(b). Figure 4(a) shows, for fixed regularization �, the impact of the � parameter
in the RBF kernel on the accuracy, whereas Figure 4(b) visualizes the accuracy for varying the
number of rounds r for AdaBoost. As shown in Figure 4(a), the choice of � in the SVM problem
clearly has a huge impact on quality; automatically selecting � is important. On the other hand,
for the same datasets, it appears that the number of rounds in AdaBoost is not quite as significant
once r � 25 (shown in Figure 4(b)). Hence, an optimizer might decide to initially use AdaBoost -
without scaling and with a fixed round parameter - in order to quickly provide the user with a first
classifier. Afterwards, the system might explore SVMs with scaled features to improve the model,
before extending the search space to the remaining combinations.

The general accuracy of algorithms is just one of the aspects an optimizer may take into account.
Statistics about the dataset itself, di↵erent data layouts, algorithm speed and parallel execution
strategies (as described in the next section) are just a few additional dimensions the optimizer may
exploit to improve the learning process. In this project, we will evaluate these freedoms of choice
and build the foundation for cost-based (query) optimization for machine learning.
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Why	  Op"mize?	  
Quality	  
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4 Related Work

COML is not the first system trying to make machine learning more accessible, but it is the first to
free users from algorithm choices and to automatically optimize for distributed execution. Probably
most related to COML are Weka [4], MADLib [47], and Mahout [3]. Weka is a collection of ML
tools for data mining that simplifies their usage by providing a simple UI. Weka, however, requires
expert knowledge to choose and configure the ML algorithm and is a single node system. On the
database and distributed side, Mahout’s goal is to build a scalable ML library on top of Hadoop,
while MADLib provides an ML library for relational database systems. Neither system addresses
the (di�cult but necessary) challenge of optimizing the learning algorithms.

Google Predict [2] is Google’s proprietary web-service for prediction problems, but restricts the
maximum training data-size to 250MB. In [18], the authors make the case that databases should
natively support predictive models and present a first prototype called Longview. We extend this
vision by supporting all kinds of ML algorithms, not just predictive models. Furthermore, the
focus of this project is on the optimization for ML instead of the language integration within the
relational model.

Recently, there have been e↵orts to build distributed run-times for more advanced analytical tasks.
For example, Hyracks [27], HaLoop [32] and AMPLab’s Spark [72, 6] have special iterative in-
memory operations to better support ML algorithms. As mentioned earlier, the goal of this project
is not on inventing a new run-time for machine learning; instead we will use Spark.

SystemML [46] proposes an R-like language and shows how it can be optimized and compiled down
to MapReduce. However, SystemML tries to support ML experts to develop e�cient distributed
algorithms and does not aim at simplifying the use of ML, for example, by automatically tuning the
training step. Still, the ideas of SystemML are compelling and we might leverage them as part of our
physical plan optimization. In [41], the authors show how many ML algorithms can be expressed as
a relational-friendly convex-optimization problem, whereas the authors of [70] present techniques
to optimize inference algorithms in a probabilistic DBMS. We leverage these techniques in our
run-time, but our system aims beyond a single machine and extends the presented optimization
techniques.

This project builds on the strong foundation of declarative languages and query optimization.
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AdaBoost	  
regulariza"on	  

Scale-‐factor	  



Why	  Op"mize?	  
	  Speed	  

•  Running	  1	  algorithm	  tends	  to	  be	  I/O	  bound	  
•  Idea:	  train	  in	  parallel	  with	  different	  algorithms	  
and	  parameters	  à	  Similar	  to	  shared	  cursors	  
in	  DB-‐world	  

•  Ques"ons:	  
– How	  many	  models?	  	  
à	  How	  to	  make	  it	  cache-‐aware	  

–  Impact	  of	  sampling?	  
– How	  to	  leverage	  modern	  CPUs,	  in	  par"cular	  
vectoriza"on	  and	  CPU	  pipelining?	  



Direc"on	  
•  Released:	  

–  MLI	  interface	  
–  Half-‐full	  binders	  as	  part	  of	  Spark	  
–  Some	  simple	  feature	  extractors	  
–  (End-‐to-‐end	  use	  cases)	  

•  Working	  on:	  
–  Op"miza"on	  techniques	  	  
–  Cost-‐based	  op"mizer	  
–  Unified	  language	  for	  end	  users	  and	  ML	  developers	  
–  Advanced	  ML	  capabili"es:	  Time-‐series	  algorithms,	  graphical	  
models,	  advanced	  op"miza"ons,	  online	  updates,	  sampling	  for	  
efficiency	  

–  Integra"on	  into	  TupleWare:	  High-‐Performance	  analy"c	  pla|orm	  
–  Visualiza"on	  
	  



MLBase	  -‐	  Summary	  

•  MLbase	  is	  a	  first	  declara1ve	  machine-‐learning	  
system	  

•  It	  simplifies	  ML	  in	  the	  same	  way	  as	  databases	  
simplify	  data	  management	  

•  Teaser:	  TupleWare	  will	  integrate	  Mlbase	  
and	  leverage	  ideas	  from	  programming	  
languages	  to	  significantly	  speed-‐up	  ML	  
and	  explora"ve	  data	  analysis	  
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