
UC Berkeley

Tim	
 Kraska	
 <"m_kraska@brown.edu>	

baseML

baseML

baseML

baseML

ML base

ML base

ML base

ML base

ML base

1	
 PetaByte	
 reported	
 every	
 second	
 by	
 LHC	
 	

My	
 Hidden	
 Mo1va1on	

Why	
 is	
 it	

hard?	
 damn	

so	
 	

Volume	
 Variety	

Velocity	

Tool	
 complexity	

Mul1-­‐hypotheses	
 	

Pi?all	

Explora1ve	

Everybody	
 thinks	
 about	
 	

Data	
 …not	
 Queries	

Brown	
 Projects	

-­‐Store	
 DBNav	

TupleWare	

Data	
 Tamer	

baseML

baseML

baseML

baseML

ML base

ML base

ML base

ML base

ML base

baseML

baseML

baseML

baseML

ML base

ML base

ML base

ML base

ML base

DB-­‐hard	
 Queries	

8	

SELECT Market_Cap
From Companies
Where Company_Name = “IBM”

Number of Rows: 0

Problem:
Entity Resolution

Company_Name	
 Address	
 Market	
 Cap	

Google	
 Googleplex,	
 Mtn.	
 View	
 CA	
 $210Bn	

Intl.	
 Business	
 Machines	
 Armonk,	
 NY	
 $200Bn	

MicrosoS	
 Redmond,	
 WA	
 $250Bn	

DB-­‐hard	
 Queries	

9	

SELECT Market_Cap
From Companies
Where Company_Name = “Apple”

Number of Rows: 0

Problem:
Missing Data

Company_Name	
 Address	
 Market	
 Cap	

Google	
 Googleplex,	
 Mtn.	
 View	
 CA	
 $210Bn	

Intl.	
 Business	
 Machines	
 Armonk,	
 NY	
 $200Bn	

MicrosoS	
 Redmond,	
 WA	
 $250Bn	

10	

SELECT Image
From Pictures
Where Image contains
“professor with beard”

Number of Rows: 0

Problem:
Missing Intelligence

DB-­‐hard	
 Queries	

Easy	
 Queries	

11	

SELECT Image
From Pictures
Where Image contains
“professor with beard”

Micro-­‐Task	
 CrowdSourcing	

12	

Overview	

13	

Problem	

•  How	
 to	
 integrate	
 this	
 new	
 resource	

“humans”	
 for	
 DB-­‐hard	
 queries	

•  How	
 to	
 ensure	
 high-­‐quality	
 results	

Contribu1ons	

•  CrowdDb	
 Systems	

•  Architecture	

•  Query	
 language	

•  Query	
 execu"on	

•  Quality	
 Control	
 for	
 Sets	

Queries	
 in	
 the	
 Open	
 World	

CREATE CROWD TABLE PEOPLE(name,
age, picture, beard, occupation)!
	

14	

Big	
 Ques1ons	

When	
 should	
 we	
 stop	
 asking	

ques1ons?	

	

Can	
 we	
 es1mate	
 query	

result	
 set	
 size?	

15	

Querying	
 the	
 crowd	

16	

•  SELECT	
 name	
 FROM	
 US_States	

– Experiment	
 runs	
 on	
 Mechanical	
 Turk	

– Avg.	
 “accumula"on	
 curve”	

0 50 100 150 200 250 300

0
10

20
30

40
50

States: unique items

Answers (HITs)

av
g

un

iq
ue

 a
ns

we
rs

#	
 responses	

	

Avg	
 #	
 unique	

answers	

	

	

Species	
 es"ma"on	

17	

Species	
 es"ma"on	

•  Sample	
 drawn	
 from	
 a	
 popula"on	

–  There	
 are	
 N	
 different	
 types	
 within	
 the	
 popula"on,	
 N	

unknown	

– Analog:	
 worker	
 answers	
 are	
 samples	
 from	
 item	

distribu"on	

N	

pr
ob

ab
ili
ty
	

18	

sample	
 Answers	

•  Calculate	
 query	
 progress	

–  based	
 on	
 es"mate	
 of	
 N	

– Use	
 Chao92	
 es"mator,	
 suitable	
 for	
 open-­‐world	

Worker	
 behavior:	
 example	

•  United	
 Na"ons	
 member	
 countries	
 (192)	

– Simulated	
 vs.	
 actual	
 cardinality	
 es"mate	

19	

200 400 600 800

0
50

10
0

15
0

20
0

25
0

30
0

answers

ch
ao

92
 e

st
im

at
e

actual
expected

Worker	
 behavior	

20	

!₁

#

!₂ !₃

(A, B, C, D, F, A, G, B, A, ….)

…

A B C D E F G H I J K...

#

(A, B, G, H, F, I, A, E, E, K, ….)

(a) Database Sampling (B) Crowd Based Sampling

#&= sampling process with replacement
!&= sampling process without replacement

W
orker

Processes
W

orker
Arrival Process

A B C D E F G H I J K... A B C D E F G H I J K... A B C D E F G H I J K...

“Streakers”[Heer10]	

21	

worker

of
 a

ns
we

rs

0
5

10
20

30

of

 a
ns

we
rs

0
50

10
0

15
0

20
0 UN 2

workers	

	

#	
 answers	

	

	

	

	

	

Streakers	
 provide	
 a	
 lot	
 of	
 unique	
 answers	

Streaker-­‐tolerant	
 es"mator	

•  Chao92	
 es"mator	

– Non-­‐parametric,	
 “frequency	
 of	
 frequencies”	
 sta"s"c	

•  f1	
 =	
 singletons,	
 f2	
 	
 =	
 doubletons,	
 f0	
 	
 =	
 unobserved	

•  Uses	
 no"on	
 of	
 sample	
 coverage:	
 	

22	

IV. STREAKER-TOLERANT COMPLETENESS ESTIMATOR

Our goal is to provide the user with a progress estimate
for an open-world query based on the answers that have been
gathered so far. However, in the last section we demonstrated
how having a crowd of humans enumerate a set creates a
two-layer sampling process, and that the order in which items
arrive depends heavily on different worker behaviors—which
impacts the accuracy of the estimator.

In this section, we extend the Chao92 algorithm to make
the estimator more robust against the impact of individual
workers. We focus our effort mainly on reducing the impact
of streakers and worker arrival, and exclude for now cases for
which we can not make a good prediction, discussed in the
following subsections in more detail. We first introduce the
basic estimator model and Chao92 more formally before we
present our extension that handles streaker impact. Finally,
we evaluate our technique by first proposing a new metric
that incorporates the notions of estimate stability and fast
convergence to the true cardinality, then applying this metric
to measure the effectiveness of our technique using various
use cases in addition to the UN.

A. Basic Estimator Model and F-Statistic

Receiving answers from workers is analogous to drawing
samples from some underlying distribution of unknown size
N ; each answer corresponds to one sample from the item
distribution. We can rephrase the problem as a species esti-
mation problem as follows: The set of HITs received from
AMT is a sample of size n drawn from a population in which
elements can be from N different classes, numbered 1 � N
(N , unknown, is what we seek); c is the number of unique
classes (species) seen in the sample. Let ni be the number of
elements in the sample that belong to class i, with 1 ⇥ i ⇥ N .
Of course some ni = 0 because they have not been observed
in the sample. Let pi be the probability that an element from
class i is selected by a worker,

⇧N
i=1 pi = 1; such a sample

is often described as a multinomial sample [12].
One might try to estimate the underlying distribution

{p1, ..., pN } in order to predict the cardinality N . However,
Burnham and Overton show in [17] that the aggregated
“frequency of frequencies”-statistic (hereon f -statistic) is suf-
ficient for estimating the number of unobserved species for
non-parametric algorithms. The f -statistic captures the relative
frequency of observed classes in the sample. For a population
that can be partitioned into N classes (items), and given a
sample of size n, let fj be the number of classes that have
exactly j members in the sample. Note f1 represents the
“singletons” and f2 the “doubletons”. The goal is to estimate
the cardinality by predicting f0, the number of unseen classes.

B. The Chao92 Estimator

Our technique is based on the Chao92 [14] estimator, which
uses sample coverage to predict N . The sample coverage C is
the sum of the probabilities pi of the observed classes. How-
ever, since the underlying distribution p1...pN is unknown, the

Good-Turing estimator [19] using the f -statistic is used:

Ĉ = 1 � f1/n (1)

Furthermore, the Chao92 estimator attempts to explicitly char-
acterize and incorporate the skew of the underlying distribution
using the coefficient of variance (CV), denoted �, a metric
that can be used to describe the variance in a probability
distribution [14]; we can use the CV to compare the skew of
different class distributions. The CV is defined as the standard
deviation divided by the mean. Given the pi’s (p1 · · · pN)
that describe the probability of the ith class being selected,
with mean p̄ =

⇧
i pi/N = 1/N , the CV is expressed as

� =
�⇧

i(pi � p̄)2/N
⇥1/2 / p̄ [14]. A higher CV indicates

higher variance amongst the pi’s, while a CV of 0 indicates
that each item is equally likely.

The true CV cannot be calculated without knowledge of the
pi’s, so Chao92 uses an estimate �̂ based on the f -statistic:

�̂2 = max
⇤

c
Ĉ

⇧
i i(i � 1)fi

n(n � 1) � 1 , 0
⌅

(2)

The final estimator is then defined as:

N̂chao92 = c

Ĉ
+ n(1 � Ĉ)

Ĉ
�̂2 (3)

Note that if �̂2 = 0 (i.e., indicating a uniform distribution),
the estimator reduces to c/Ĉ.

C. An Estimator for Crowdsourced Enumeration
The Chao92 estimator is heavily influenced by the presence

of rare items in the sample; the coverage estimate Ĉ is
based entirely on the percentage of singleton answers (f1s).
Recall from Section III the different crowd behaviors—many
of them result in rapid arrival of unique answers. When unique
items appear “too quickly”, the estimator interprets this as
a sign the complete set size is larger than it truly is. We
develop an estimator based on Chao92 that ameliorates some
of the overestimation issues caused by an overabundance of
f1 answers.

Most of the dramatic overestimation occurs in the presence
of streakers, i.e., significant skew in the amount of answers
provided by each worker. Notably, problems occur when one
or a few workers contribute substantially more answers than
others, possibly also drawing answers from a different data
distribution. As other workers are not given the opportunity
to provide answers that would subsequently increase the f2s,
f3s, etc. in the sample, Chao92 predicts a full set cardinality
that is too large. Thus our estimator is designed to identify any
worker(s) who are outliers with respect to their contribution
of unique answers in the sample (their f1 answers).

The idea behind making the Chao92 estimator more resilient
against streakers is to alter the f -statistic. The first step is
to identify those workers who are “f1 outliers”. We define
outlier in a traditional sense, two standard deviations outside
the mean of all workers W . To avoid false negatives due to
a true outlier’s influence on the mean and standard deviation,
both statistics are calculated without including the potential

IV. STREAKER-TOLERANT COMPLETENESS ESTIMATOR

Our goal is to provide the user with a progress estimate
for an open-world query based on the answers that have been
gathered so far. However, in the last section we demonstrated
how having a crowd of humans enumerate a set creates a
two-layer sampling process, and that the order in which items
arrive depends heavily on different worker behaviors—which
impacts the accuracy of the estimator.

In this section, we extend the Chao92 algorithm to make
the estimator more robust against the impact of individual
workers. We focus our effort mainly on reducing the impact
of streakers and worker arrival, and exclude for now cases for
which we can not make a good prediction, discussed in the
following subsections in more detail. We first introduce the
basic estimator model and Chao92 more formally before we
present our extension that handles streaker impact. Finally,
we evaluate our technique by first proposing a new metric
that incorporates the notions of estimate stability and fast
convergence to the true cardinality, then applying this metric
to measure the effectiveness of our technique using various
use cases in addition to the UN.

A. Basic Estimator Model and F-Statistic

Receiving answers from workers is analogous to drawing
samples from some underlying distribution of unknown size
N ; each answer corresponds to one sample from the item
distribution. We can rephrase the problem as a species esti-
mation problem as follows: The set of HITs received from
AMT is a sample of size n drawn from a population in which
elements can be from N different classes, numbered 1 � N
(N , unknown, is what we seek); c is the number of unique
classes (species) seen in the sample. Let ni be the number of
elements in the sample that belong to class i, with 1 ⇥ i ⇥ N .
Of course some ni = 0 because they have not been observed
in the sample. Let pi be the probability that an element from
class i is selected by a worker,

⇧N
i=1 pi = 1; such a sample

is often described as a multinomial sample [12].
One might try to estimate the underlying distribution

{p1, ..., pN } in order to predict the cardinality N . However,
Burnham and Overton show in [17] that the aggregated
“frequency of frequencies”-statistic (hereon f -statistic) is suf-
ficient for estimating the number of unobserved species for
non-parametric algorithms. The f -statistic captures the relative
frequency of observed classes in the sample. For a population
that can be partitioned into N classes (items), and given a
sample of size n, let fj be the number of classes that have
exactly j members in the sample. Note f1 represents the
“singletons” and f2 the “doubletons”. The goal is to estimate
the cardinality by predicting f0, the number of unseen classes.

B. The Chao92 Estimator

Our technique is based on the Chao92 [14] estimator, which
uses sample coverage to predict N . The sample coverage C is
the sum of the probabilities pi of the observed classes. How-
ever, since the underlying distribution p1...pN is unknown, the

Good-Turing estimator [19] using the f -statistic is used:

Ĉ = 1 � f1/n (1)

Furthermore, the Chao92 estimator attempts to explicitly char-
acterize and incorporate the skew of the underlying distribution
using the coefficient of variance (CV), denoted �, a metric
that can be used to describe the variance in a probability
distribution [14]; we can use the CV to compare the skew of
different class distributions. The CV is defined as the standard
deviation divided by the mean. Given the pi’s (p1 · · · pN)
that describe the probability of the ith class being selected,
with mean p̄ =

⇧
i pi/N = 1/N , the CV is expressed as

� =
�⇧

i(pi � p̄)2/N
⇥1/2 / p̄ [14]. A higher CV indicates

higher variance amongst the pi’s, while a CV of 0 indicates
that each item is equally likely.

The true CV cannot be calculated without knowledge of the
pi’s, so Chao92 uses an estimate �̂ based on the f -statistic:

�̂2 = max
⇤

c
Ĉ

⇧
i i(i � 1)fi

n(n � 1) � 1 , 0
⌅

(2)

The final estimator is then defined as:

N̂chao92 = c

Ĉ
+ n(1 � Ĉ)

Ĉ
�̂2 (3)

Note that if �̂2 = 0 (i.e., indicating a uniform distribution),
the estimator reduces to c/Ĉ.

C. An Estimator for Crowdsourced Enumeration
The Chao92 estimator is heavily influenced by the presence

of rare items in the sample; the coverage estimate Ĉ is
based entirely on the percentage of singleton answers (f1s).
Recall from Section III the different crowd behaviors—many
of them result in rapid arrival of unique answers. When unique
items appear “too quickly”, the estimator interprets this as
a sign the complete set size is larger than it truly is. We
develop an estimator based on Chao92 that ameliorates some
of the overestimation issues caused by an overabundance of
f1 answers.

Most of the dramatic overestimation occurs in the presence
of streakers, i.e., significant skew in the amount of answers
provided by each worker. Notably, problems occur when one
or a few workers contribute substantially more answers than
others, possibly also drawing answers from a different data
distribution. As other workers are not given the opportunity
to provide answers that would subsequently increase the f2s,
f3s, etc. in the sample, Chao92 predicts a full set cardinality
that is too large. Thus our estimator is designed to identify any
worker(s) who are outliers with respect to their contribution
of unique answers in the sample (their f1 answers).

The idea behind making the Chao92 estimator more resilient
against streakers is to alter the f -statistic. The first step is
to identify those workers who are “f1 outliers”. We define
outlier in a traditional sense, two standard deviations outside
the mean of all workers W . To avoid false negatives due to
a true outlier’s influence on the mean and standard deviation,
both statistics are calculated without including the potential

•  Adding	
 streaker-­‐tolerance	

–  Es"mator	
 over-­‐predicts	
 cardinality	
 with	
 abundance	
 of	

unique	
 answers	
 (f1)	

–  Remove	
 f1	
 outliers	

(a) UN 1

200 400 600 800

0
10

0
20

0
30

0

answers

ch
ao

92
 e

st
im

at
e

�
orig

= 0.14
�

new

= 0.087

(b) UN 2

200 400 600 800

0
10

0
20

0
30

0

answers

ch
ao

92
 e

st
im

at
e

�
orig

= 0.11
�

new

= 0.099

(d) UN 3

200 400 600 800

0
10

0
20

0
30

0

answers

ch
ao

92
 e

st
im

at
e

�
orig

= 0.065
�

new

= 0.058

(e) UN 4

200 400 600 800

0
10

0
20

0
30

0

answers

ch
ao

92
 e

st
im

at
e

�
orig

= 0.18
�

new

= 0.28

(f) States 1

50 100 150 200 250

0
20

40
60

80
10

0

answers

ch
ao

92
 e

st
im

at
e

�
orig

= 0.046
�

new

= 0.053

(g) States 2

50 100 150 200 250

0
20

40
60

80
10

0

answers

ch
ao

92
 e

st
im

at
e

�
orig

= 0.028
�

new

= 0.024

(h) States 3

50 100 150 200 250

0
20

40
60

80
10

0

answers

ch
ao

92
 e

st
im

at
e

�
orig

= 0.033
�

new

= 0.068

0 2 4 6 8 10

2
4

6
8

10

c(1, 1)

c(
1,

 1
0)

original
crowd estimator
true value

Fig. 7. Estimator results on representative UN country and US states experiments

outlier’s f1 count. The f1 count of worker i is compared to
the mean x̄i and the sample standard deviation ⇥̂i:

x̄i =
⇥

⇥j,j �=i

f1(j)
W � 1 ⇥̂i =

⇧⌅⌅⇤
⇥

⇥j,j �=i

(f1(j) � x̄i)2

W � 2 (4)

We create f̃1 from the original f1 by reducing each worker
i’s f1-contribution to fall within 2⇥̂i + x̄i:

f̃1 =
⇥

i

min(f1(i), 2⇥̂i + x̄i) (5)

The final estimator is similar to equation 3 except that it
uses the f̃1 statistic. For example, with a coefficient of variance
�̂2 = 0, it would simplify to:

N̂crowd = cn

n �
�

i min(f1(i), 2⇥̂i + x̄i)
(6)

Although a small adjustment, N̂crowd is more robust against
the impact of streakers than the original Chao92, as we show
in our evaluation next.

D. Experimental Results

We ran over 30,000 HITs on AMT for set enumeration
tasks to evaluate our technique. Several CROWD tables we
experimented with include small and large well-defined sets
like NBA teams, US states, UN member countries, as well as
sets that can truly leverage human perception and experience
like indoor plants with low-light needs, restaurants in San
Francisco serving scallops, slim-fit tuxedos, and ice cream
flavors. Workers were paid $0.01-$0.05 to provide one item
in the result set using the UI shown in Figure 3; they were
allowed to complete multiple tasks if they wanted to submit
more than one answer. In the remainder of this paper we focus
on a subset of the experiments, some with known cardinality
and fixed membership, US states (nine experiment runs) and
UN member countries (five runs), as well as more open ended
queries like plants, restaurants, tuxedos, and ice cream flavors
(one run each).

1) Error Metric: Due to a lack of a good metric to evaluate
estimators with respect to stability and convergence rate, we
developed an error metric � that captures bias (absolute
distance from the true value), as well as the estimator’s time to
convergence and stability. The idea is to weight the magnitude
of the estimator’s bias more as the size of the sample increases.
Let N denote the known true value, and N̂i denote the estimate
after i samples. After n samples, � is defined as:

� =
�n

i=1 |N̂i � N |i�
i

= 2
�n

i=1 |N̂i � N |i
n(n + 1) (7)

A lower � value means a smaller averaged bias and thus,
a better estimate. The weighting renders a harsher penalty
for incorrectness later on than in the beginning, in addition
to penalizing an estimator that takes longer to reach the true
value; this addresses the convergence rate criteria. The error
metric also rewards estimators for staying near the true value.

2) Results: UN and States: We first illustrate how N̂crowd

behaves for a representative set of UN member countries and
US states experiments; we elide the full set for space reasons.
For both experiments the UI from Figure 3 was shown by
CrowdDB to ask for an UN member country, respectively
US state, on AMT for $0.01 cents per task. Figures 7(a-
h) show cardinality estimates as well as the � metric for
the selected experiments. We observed that our estimate has
an improvement over Chao92 for most UN experiments we
performed as Figure 7(a) and (b) show. In UN 1 our estimates
reduces the overestimation of Chao92 that occurred during the
middle of the experiment. In the UN 2 experiment, one streaker
dominated the total answer set at the beginning—a substantial
outlier. Once his contribution was reduced dramatically, the
remaining workers’ answers had significant overlap because
most were enumerating the list of nations alphabetically,
resulting in a low cardinality because of the heavily skewed
data distribution this scenario creates. Recall from the previous
section that the expected behavior of the estimator in this
case is to under-predict. In contrast, the third UN experiment
run had several streakers at the beginning who each had
very different data distributions (i.e., enumerating the list of
nations from different alphabetical start points). While the
heuristic helped level the f1 contribution from these workers,

with	
 coefficient	
 of	
 variance	
 =	
 0	
 	

Streaker-­‐tolerant	
 es"mator:	
 results	

•  “UN	
 member	
 na"ons”	
 	

(run	
 1)	

– Streaker	
 during	
 the	

middle	
 ameliorated	

23	

200 400 600 800

0
10

0
20

0
30

0

answers

ch
ao

92
 e

st
im

at
e

0 2 4 6 8 10

2
4

6
8

10

c(1, 1)
c(

1,
 1

0)

original
crowd estimator
true value

200 400 600 800

0
10

0
20

0
30

0

answers

ch
ao

92
 e

st
im

at
e

0 2 4 6 8 10

2
4

6
8

10

c(1, 1)

c(
1,

 1
0)

original
crowd estimator
true value

•  “UN	
 member	
 na"ons”	
 	

(run	
 2)	

–  Streaker	
 at	
 beginning	

–  Other	
 workers	
 shared	

skewed	
 distribu"on,	
 yields	

low	
 cardinality	
 es"mate	

Now	
 that	
 we	

have	
 the	
 data…	

…how	
 do	
 we	

analyze	
 it	

The	
 Liqle	
 Secret	

Machine	
 Learning	
 is	
 like	
 Teenage	
 Sex	

-­‐  Everybody	
 talks	
 about	
 it	

-­‐  Nobody	
 knows	
 how	
 to	
 do	
 it	

-­‐  Everyone	
 thinks	
 everyone	
 else	
 is	
 doing	
 it	

-­‐  So	
 everyone	
 claims	
 they	
 are	
 doing	
 it	

The	
 Problem	

Build	
 a	
 Classifier	

What	
 you	
 want	
 to	
 do	
 What	
 you	
 have	
 to	
 do	

•  Learn	
 the	
 internals	
 of	
 ML	

classifica1on	
 algorithms,	
 sampling,	

feature	
 selec1on,	
 X-­‐valida1on,….	

•  Poten1ally	
 learn	
 Spark/Hadoop/…	

•  Implement	
 3-­‐4	
 algorithms	

•  Implement	
 grid-­‐search	
 to	
 find	
 the	

right	
 algorithm	
 parameters	

•  Implement	
 valida1on	
 algorithms	

•  Experiment	
 with	
 different	
 sampling-­‐

sizes,	
 algorithms,	
 features	

•  ….	

and	
 in	
 the	
 end	

Ask	
 For	
 Help	

1st Goal: Simplify the use of ML algorithms
2nd Goal: Make it easier to implement distributed ML algorithms

	
 A.	
 Talwalkar	
 E.	
 Sparks	

Collaborators	

and	
 others…..	

A	
 Declara"ve	
 Approach	
 to	
 ML	

SQL	
 Result	

A	
 Declara"ve	
 Approach	
 to	
 ML	

SQL	
 Result	
 MQL	
 Model	

Use	
 Cases	

var	
 X	
 =	
 load("als_clinical",	
 2	
 to	
 10)	

var	
 y	
 =	
 load("als_clinical",	
 1)	

var	
 (fn-­‐model,	
 summary)	
 =	
 top(doClassify(X,	
 y),	
 5min)	

var	
 G	
 =	
 loadGraph("twiqer_network")	
 	

var	
 hubs-­‐nodes	
 =	
 findTopKDegreeNodes(G,	
 k	
 =	
 1000)	
 	

var	
 text-­‐features	
 =	
 textFeaturize(load("twiqer_tweet_data"))	
 	

var	
 T-­‐hub	
 =	
 join(hub-­‐nodes,	
 "u-­‐id",	
 text-­‐features,	
 "u-­‐id")	

findTopFeatures(T-­‐hub)	
 	

Supervised	
 Classifica"on:	
 ALS	
 Predic"on	
 	

Unsupervised	
 Feature	
 Extrac"on:	
 Twiqer	

Use	
 Cases	

var	
 X	
 =	
 load("als_clinical",	
 2	
 to	
 10)	

var	
 y	
 =	
 load("als_clinical",	
 1)	

var	
 (fn-­‐model,	
 summary)	
 =	
 top(doClassify(X,	
 y),	
 5min)	

Supervised	
 Classifica"on:	
 ALS	
 Predic"on	
 	

Hints	

var	
 X	
 =	
 load("als_clinical",	
 2	
 to	
 10)	

var	
 y	
 =	
 load("als_clinical",	
 1)	

var	
 (fn-­‐model,	
 summary)	
 =	
 top(doClassify(X,	
 y,	
 SVM),	
 5min)	

Supervised	
 Classifica"on:	
 ALS	
 Predic"on	
 	

Streaming-­‐like	
 Data	
 Model	

Infinite	
 ordered	
 stream	
 of	
 items,	
 being	
 either	

models	
 (i.e.,	
 higher-­‐ordered	
 func"ons)	
 or	
 tuples	

	

	

	

Model	

4	

Model	

3	

Model	

2	

Model	

1	

do
Cl
as
sif
y	

to
p	

Model	

2	

ML Developer

Meta-Data

Statistics

User

Declarative
ML Task

ML Contract +
Code

Master Server

….

result
(e.g., fn-model & summary)

COML
(Optimizer)

Parser

Executor/Monitoring

Binders of
Algorithms

Runtime Runtime Runtime Runtime

LLP

PLP

M
aster

MLbase	
 Architecture	

Binders	
 full	
 of	

algorithms	

allows	
 to	
 add	
 	

more	

operators	
 	

Sta1s1cs	

about	
 algorithms	

and	
 data	

Adap1ve	

Op1mizer	

es"mates	
 run-­‐
"me	
 and	
 quality	

improvement	

MLI	

Interface	
 to	
 simplify	

implemen"ng	
 distr.	

ML	
 algorithms	

1	

2	

3	

3	

ML Developer

Meta-Data

Statistics

User

Declarative
ML Task

ML Contract +
Code

Master Server

….

result
(e.g., fn-model & summary)

COML
(Optimizer)

Parser

Executor/Monitoring

Binders of
Algorithms

Runtime Runtime Runtime Runtime

LLP

PLP

M
aster

MLbase	
 Architecture	

Binders	
 full	
 of	

algorithms	

allows	
 to	
 add	
 	

more	

operators	
 	

Sta1s1cs	

about	
 algorithms	

and	
 data	

Adap1ve	

Op1mizer	

es"mates	
 run-­‐
"me	
 and	
 quality	

improvement	

MLI	

Interface	
 to	
 simplify	

implemen"ng	
 distr.	

ML	
 algorithms	

1	

2	

3	

3	

MLI:	
 Machine	
 Learning	
 Interface	

•  Shield	
 ML	
 Developers	
 from	
 low-­‐level-­‐details:	
 provide	

familiar	
 mathema"cal	
 operators	
 in	
 distributed	
 sewng	

•  Physical	
 independence	
 between	
 ML	
 algorithm	
 and	
 run-­‐
"me	

•  Ini"al	
 abstrac"ons:	
 MLTable,	
 MLMatrix,	
 MLOpt	

•  Current	
 supported	
 run-­‐"mes:	

1	

TupleWare	

MLTable	

•  Flexibility	
 when	
 loading	

data	
 	

–  e.g.,	
 CSV,JSON,XML	
 	

–  Heterogeneous	
 data	
 across	

columns	
 	

– Missing	
 Data	
 	

–  Feature	
 extrac"on	
 	

•  Common	
 Interface	
 	

•  Supports	
 MapReduce	
 and	
 	

Rela"onal	
 Operators	

•  Inspired	
 by	
 DataFrames	
 (R)	

and	
 Pandas	
 (Python)	
 	

38	

MLSubMatrix	

•  Linear	
 algebra	
 on	
 local	

par11ons	

–  E.g.,matrix-­‐vector	

opera"ons	
 for	
 mini-­‐
batch	
 logis"c	
 regression	

–  E.g.,	
 solving	
 linear	

systems	
 of	
 equa"ons	
 for	

Alterna"ng	
 Least	

Squares	

•  Sparse	
 and	
 Dense	

Matrix	
 Support	

MLSubMatrix

✦ Linear%algebra%on%local%parAAons
✦ E.g.,$matrixFvector$opera2onsfor

miniFbatch$logis2c$regression
✦ E.g.,$solving$linear$system$of$equa2ons$

for$Alterna2ng$Least$Squares

✦ Sparse%and%Dense%Matrix%Support

MLSolve	

•  Distributed	

implementa1ons	
 of	

common	
 op1miza1on	

pa_erns	

–  E.g.,	
 Stochas"c-­‐Gradient-­‐
Descent:	
 Applicable	
 to	

summable	
 ML	
 losses	

–  E.g.,	
 LBFGS:	
 An	

approximate	
 2nd	
 order	

op"miza"on	
 method	

–  E.g.,	
 ADMM:	

Decomposi"on	
 /	

coordina"on	
 procedure	

MLSolve

✦ Distributed%implementaAons%of%
common%opAmizaAon%paZerns

✦ E.g.,$Stochas2c$Gradient$Descent:$
ApplicabletosummableMLlosses

✦ E.g.,$LBFGS:$An$approximate$2ndF
order$op2miza2on$method$

✦ E.g.,$ADMM:$Decomposi2on$/$
coordina2on$procedure

ML Developer

Meta-Data

Statistics

User

Declarative
ML Task

ML Contract +
Code

Master Server

….

result
(e.g., fn-model & summary)

COML
(Optimizer)

Parser

Executor/Monitoring

Binders of
Algorithms

Runtime Runtime Runtime Runtime

LLP

PLP

M
aster

MLbase	
 Architecture	

Binders	
 full	
 of	

algorithms	

allows	
 to	
 add	
 	

more	

operators	
 	

Sta1s1cs	

about	
 algorithms	

and	
 	
 data	

Adap1ve	

Op1mizer	

es"mates	
 run-­‐
"me	
 and	
 quality	

improvement	

MLI	

Interface	
 to	
 simplify	

Implemen"ng	
 distr.	

ML	
 algorithms	

1	

2	

3	

3	

Binders	
 Full	
 of	
 Algorithms	

Implementa1on	

On	
 top	
 of	
 MLI	
 	

(with	
 op"miza"on	
 hints)	

Contract	

•  Type	
 (e.g.,	
 classifica"on)	

•  Parameters	

•  Run"me	
 (e.g.,	
 O(n))	

•  Input-­‐Specifica"on	

•  Output-­‐Specifica"on	

•  …	

ML Developer

+	

2	

Today:	
 Half-­‐Full	
 Binders	

•  Regression:	
 Linear	
 Regression	
 (+Lasso,	
 Ridge)	
 	

•  Classifica1on:	
 Logis"c	
 Regression,	
 Linear	
 SVM	
 (+L1,	
 L2),	

Mul"nomial	
 Regression,	
 [Naïve	
 Bayes,	
 Decision	
 Trees]	
 	

•  Collabora1ve	
 Filtering:	
 Alterna"ng	
 Least	
 Squares,	
 [DFC]	
 	

•  Clustering:	
 K-­‐Means,	
 [DP-­‐Means]	

•  Op1miza1on	
 Primi1ves:	
 SGD,	
 Parallel	
 Gradient,	
 [L-­‐BFGS,	

ADMM,	
 Adagrad]	

•  Feature	
 Extrac1on:	
 [PCA],	
 N-­‐grams,	
 feature	
 cleaning	

normaliza"on	

•  Other	
 tools:	
 Cross	
 Valida"on,	
 Evalua"on	
 Metrics	

•  Released	
 as	
 part	
 of	
 Spark	
 and	
 MLlib	

Example:	
 Alterna"ng	
 Least	
 Squares	
 	

System	
 	
 Lines	
 of	
 Code	
 	

Matlab	
 	
 20	
 	

Mahout	
 	
 865	
 	

GraphLab	
 	
 383	
 	

MLI	
 	
 32	
 	

MLbase GraphLab Mahout Matlab−mex
0

0.5

1

1.5

2 x 104

w
al

lti
m

e
(s

)

1 Machine
4 Machines
9 Machines
16 Machines
25 Machines

ML Developer

Meta-Data

Statistics

User

Declarative
ML Task

ML Contract +
Code

Master Server

….

result
(e.g., fn-model & summary)

COML
(Optimizer)

Parser

Executor/Monitoring

Binders of
Algorithms

Runtime Runtime Runtime Runtime

LLP

PLP

M
aster

MLbase	
 Architecture	

Binders	
 full	
 of	

algorithms	

allows	
 to	
 add	
 	

more	

operators	
 	

Sta1s1cs	

about	
 algorithms	

and	
 	
 data	

Adap1ve	

Op1mizer	

es"mates	
 run-­‐
"me	
 and	
 quality	

improvement	

MLI	

Interface	
 to	
 simplify	

implemen"ng	
 distr.	

ML	
 algorithms	

1	

2	

3	

3	

var	
 X	
 =	
 load("als_clinical",2	
 to	
 10)	

var	
 y	
 =	
 load("als_clinical",	
 1)	
 	

var	
 (fn-­‐model,	
 summary)	
 =	
 	

	
 	
 	
 	
 	
 	
 	
 	
 top(doClassify(X,	
 y),	
 10min)	

MQL	

Op"miza"on	
 3	

standard feature
normalizer

create 10-folds

cross
validation

folds

(X'', y'')

SVM
kernel: RBF

λ=10⁶ σ = 1/d ⨉ 10⁶

(model-params,
cross-validation-summary)

top-1

train model

calculate
misclassification

rate

(fn-model, summary)

(X, y)

….

cross
validation

SVM
kernel: RBF

λ=10³ σ= 1/d ⨉ 10⁶

cross
validation

AdaBoost
rounds = 20

baseline-check:
nearest neighbor

baseline-check:
most common

label

(model-params,
cross-validation-summary)

fn-model

load (als_clinical)

down-sample 10%

(X, y)

(X', y')

store
normalized folds

fn-model

Execu1on	
 Plan	

1. Return	
 meaningful	
 results	

2. Op"mize	
 the	
 whole	

processing	
 pipeline	

3. Op"mize	
 quality	
 and	
 1me	

simultaneously	

Op"miza"on	
 Goals	

Current	
 Op"miza"on	
 Approach	

Idea:	
 3-­‐Step	
 Process	

Expand	

(Avoid	
 pi|alls)	
 	

Candidate	

Genera"on	

(Quality)	

Physical	

Op"miza"on	

(Speed)	

var	
 X	
 =	
 load("als_clinical",2	
 to	
 10)	

var	
 y	
 =	
 load("als_clinical",	
 1)	
 	

var	
 (fn-­‐model,	
 summary)	
 =	
 	

	
 	
 	
 	
 	
 	
 	
 	
 top(doClassify(X,	
 y),	
 10min)	

(1)	
 MQL	

Op"miza"on	

(2)	
 Generic	
 Logical	
 Plan	

grid-search

configure model

train model

down-sample

model/data
interpretation

(X', y')

load (als_clinical)

SVM Adaboost

RBF linear stumps

regularization rounds

technique

kernel

params

...

...

...

(fn-model, summary)

down-sample

(X, y)

originalfeaturization ...normalizedbin

(X, y)

fn-model

cross-validate

top-1

fn-model

summary

3	

var	
 X	
 =	
 load("als_clinical",2	
 to	
 10)	

var	
 y	
 =	
 load("als_clinical",	
 1)	
 	

var	
 (fn-­‐model,	
 summary)	
 =	
 	

	
 	
 	
 	
 	
 	
 	
 	
 top(doClassify(X,	
 y),	
 10min)	

(1)	
 MQL	

Op"miza"on	

(2)	
 Generic	
 Logical	
 Plan	

grid-search

configure model

train model

down-sample

model/data
interpretation

(X', y')

load (als_clinical)

SVM Adaboost

RBF linear stumps

regularization rounds

technique

kernel

params

...

...

...

(fn-model, summary)

down-sample

(X, y)

originalfeaturization ...normalizedbin

(X, y)

fn-model

cross-validate

top-1

fn-model

summary

3	

var	
 X	
 =	
 load("als_clinical",2	
 to	
 10)	

var	
 y	
 =	
 load("als_clinical",	
 1)	
 	

var	
 (fn-­‐model,	
 summary)	
 =	
 	

	
 	
 	
 	
 	
 	
 	
 	
 top(doClassify(X,	
 y),	
 10min)	

(1)	
 MQL	

Op"miza"on	

(2)	
 Generic	
 Logical	
 Plan	

grid-search

configure model

train model

down-sample

model/data
interpretation

(X', y')

load (als_clinical)

SVM Adaboost

RBF linear stumps

regularization rounds

technique

kernel

params

...

...

...

(fn-model, summary)

down-sample

(X, y)

originalfeaturization ...normalizedbin

(X, y)

fn-model

cross-validate

top-1

fn-model

summary

3	

Op"miza"on	

(2)	
 Generic	
 Logical	
 Plan	

standard feature
normalizer

create 10-folds

cross
validation

folds

(X'', y'')

SVM
kernel: RBF

λ=10⁶ σ = 1/d ⨉ 10⁶

(model-params,
cross-validation-summary)

top-1

train model

calculate
misclassification

rate

(fn-model, summary)

(X, y)

….

cross
validation

SVM
kernel: RBF

λ=10³ σ= 1/d ⨉ 10⁶

cross
validation

AdaBoost
rounds = 20

baseline-check:
nearest neighbor

baseline-check:
most common

label

(model-params,
cross-validation-summary)

fn-model

load (als_clinical)

down-sample 10%

(X, y)

(X', y')

store
normalized folds

fn-model

(3)	
 Op1mized	
 Plan	

grid-search

configure model

train model

down-sample

model/data
interpretation

(X', y')

load (als_clinical)

SVM Adaboost

RBF linear stumps

regularization rounds

technique

kernel

params

...

...

...

(fn-model, summary)

down-sample

(X, y)

originalfeaturization ...normalizedbin

(X, y)

fn-model

cross-validate

top-1

fn-model

summary

DB	
 Op"mizer	
 meets	
 ML	
 Parameter	
 Tuning	

More	
 than	
 Grid-­‐Search,	
 more	
 than	
 Rela"onal	
 Query	

Op"miza"on	

MLbase	
 cost-­‐based	
 op"miza"on:	
 	

	
 	
 Quality	
 &	
 Time	
 (=budget)	

	
 •  Considers	
 algorithms,	
 system	
 techniques	
 and	
 best	

prac1ce	
 workflows	
 together	

	
 •  Sta1s1cs	
 about	
 data	
 and	
 algorithms	
 	

à	
 Hope	
 to	
 find	
 strong	
 correla"on	
 between	
 data	
 sta"s"cs	
 and	

the	
 quality	
 of	
 an	
 algorithm	
 	

•  Op"miza"on	
 across	
 steps	
 (e.g.,	
 cleaning,	
 feature	
 extrac"on,	

classifica"on,…)	

•  Robustness/Avoiding	
 Overfiing	
 &	
 Hypothesis	
 Pi?all	
 (messing	

up	
 quality	
 is	
 worse	
 than	
 "me	
 in	
 tradi"onal	
 query	
 op"miza"on)	

Possible	
 Op"miza"ons	
 (classifica"on)	

standard feature
normalizer

create 10-folds

cross
validation

folds

(X'', y'')

SVM
kernel: RBF

λ=10⁶ σ = 1/d ⨉ 10⁶

(model-params,
cross-validation-summary)

top-1

train model

calculate
misclassification

rate

(fn-model, summary)

(X, y)

….

cross
validation

SVM
kernel: RBF

λ=10³ σ= 1/d ⨉ 10⁶

cross
validation

AdaBoost
rounds = 20

baseline-check:
nearest neighbor

baseline-check:
most common

label

(model-params,
cross-validation-summary)

fn-model

load (als_clinical)

down-sample 10%

(X, y)

(X', y')

store
normalized folds

fn-model

Rela1onal	
 Op1miza1ons	
 (Top-­‐K	
 Pushdown,	
 Join-­‐Ordering,…)	

Sta1c	
 ML	
 Selec1on	
 Rules	

•  Imbalance	
 of	
 labels	

•  SVMs	
 are	
 more	
 sensi"ve	
 to	
 the	
 scale-­‐parameter	
 than	

AdaBoost	
 to	
 rounds	

•  If	
 SVM	
 à	
 normalize	
 data	
 between	
 [-­‐1,	
 1]	

•  If	
 data	
 contains	
 outliers	
 à	
 pre-­‐clean	
 data	
 or	
 forego	

AdaBoost	

•  …	

Run-­‐Time	
 Op1miza1on	
 Rules	

•  Caching:	
 If	
 2nd	
 run	
 and	
 determinis"c,	
 start	
 with	
 previously	

most	
 successful	
 model	
 	

•  Set	
 sample-­‐size	
 to	
 fit	
 Input-­‐Data	
 as	
 well	
 as	
 intermediate	

result	
 in	
 memory	

•  Par""on	
 data	
 according	
 to	
 cross-­‐valida"on	

•  …	

Cost-­‐based	
 Op1miza1on	
 Rules	

•  Materializa"on	
 and	
 indexing	

•  Expected	
 quality	
 improvement	
 based	
 on	
 the	
 history	

•  Consider	
 cost	
 of	
 pre-­‐cleaning,	
 normaliza"on,	
 algorithm	

complexity,…	

•  …	

Why	
 Op"mize?	
 Pi|alls	

38/40	
 =	
 95%	

38/40	
 =	
 95%	

A	

B	

A	
 B	

Why	
 Op"mize?	

Quality	

SVM AdaBoost
original scaled

a1a 82.93 82.93 82.87
australian 85.22 85.51 86.23

breast 70.13 97.22 96.48
diabetes 76.44 77.61 76.17
fourclass 100.00 99.77 91.19
splice 88.00 87.60 91.20

Figure 3: Classifier accuracy using SVM with an RBF kernel and using AdaBoost

3.6.3 Preliminary Results

To demonstrate the possible advantages of an optimizer just for selecting among di↵erent ML
algorithms even without considering the system aspect, we implemented a prototype using two
algorithms: SVM and AdaBoost. For both algorithms, we used publicly available implementations:
LIBSVM [33] for SVM and the ML AdaBoost Toolbox [1] for AdaBoost. We evaluated the op-
timizer for a classification task similar to the one in Figure 2 with 6 datasets from the LIBSVM
website: ‘a1a’, ‘australian’, ‘breast-cancer’, ‘diabetes’, ‘fourclass’, and ‘splice’. To better visualize
the impact of finding the best ML model, we performed a full grid search over a fixed set of algo-
rithm parameters, i.e., number of rounds (r) for AdaBoost and regularization (�) and RBF scale
(�) parameters for SVM. Specifically, we tested r = {25, 50, 100, 200}, � = {10�6

, 10�3
, 1, 103, 106},

and � = 1
d ⇥ {10�6

, 10�3
, 1, 103, 106}, where d is the number of features in the dataset. For each

algorithm, set of features and parameter settings, we performed 5-fold cross validation, and report
the average results across the held-out fold.

Table 3 shows the best accuracy after tuning the parameters using grid search for the di↵erent
datasets and algorithms, with and without scaling the features (the best combination is marked in
bold). The results show first that there is no dominant combination for all datasets. Sometimes
AdaBoost outperforms SVM, sometimes scaling the features helps, sometimes it does not.

Next we turn to understanding the search problem for the parameters themselves, depicted in
Figures 4(a) and 4(b). Figure 4(a) shows, for fixed regularization �, the impact of the � parameter
in the RBF kernel on the accuracy, whereas Figure 4(b) visualizes the accuracy for varying the
number of rounds r for AdaBoost. As shown in Figure 4(a), the choice of � in the SVM problem
clearly has a huge impact on quality; automatically selecting � is important. On the other hand,
for the same datasets, it appears that the number of rounds in AdaBoost is not quite as significant
once r � 25 (shown in Figure 4(b)). Hence, an optimizer might decide to initially use AdaBoost -
without scaling and with a fixed round parameter - in order to quickly provide the user with a first
classifier. Afterwards, the system might explore SVMs with scaled features to improve the model,
before extending the search space to the remaining combinations.

The general accuracy of algorithms is just one of the aspects an optimizer may take into account.
Statistics about the dataset itself, di↵erent data layouts, algorithm speed and parallel execution
strategies (as described in the next section) are just a few additional dimensions the optimizer may
exploit to improve the learning process. In this project, we will evaluate these freedoms of choice
and build the foundation for cost-based (query) optimization for machine learning.

10

Why	
 Op"mize?	

Quality	

0%#
10%#
20%#
30%#
40%#
50%#
60%#
70%#
80%#
90%#
100%#

a1a# australian# breast# diabetes# fourclass# splice#

Ac
cu
ra
cy
'

10^=6#

10^=3#

1#

10^3#

10^6#

(a) Impact of di↵erent � =

1
d ⇥{10�6, 10�3, 1, 103, 106}

on the SVM accuracy with an RBF kernel and � = 10

�6

on LIBSVM data-sets

0%#

10%#

20%#

30%#

40%#

50%#

60%#

70%#

80%#

90%#

100%#

a1a# australian# breast# diabetes# fourclass# splice#

Ac
cu
ra
cy
' 25#

50#

100#

200#

(b) Impact of r = {25, 50, 100, 200} on AdaBoost on

LIBSVM data-sets

Figure 4: Parameter Impact

4 Related Work

COML is not the first system trying to make machine learning more accessible, but it is the first to
free users from algorithm choices and to automatically optimize for distributed execution. Probably
most related to COML are Weka [4], MADLib [47], and Mahout [3]. Weka is a collection of ML
tools for data mining that simplifies their usage by providing a simple UI. Weka, however, requires
expert knowledge to choose and configure the ML algorithm and is a single node system. On the
database and distributed side, Mahout’s goal is to build a scalable ML library on top of Hadoop,
while MADLib provides an ML library for relational database systems. Neither system addresses
the (di�cult but necessary) challenge of optimizing the learning algorithms.

Google Predict [2] is Google’s proprietary web-service for prediction problems, but restricts the
maximum training data-size to 250MB. In [18], the authors make the case that databases should
natively support predictive models and present a first prototype called Longview. We extend this
vision by supporting all kinds of ML algorithms, not just predictive models. Furthermore, the
focus of this project is on the optimization for ML instead of the language integration within the
relational model.

Recently, there have been e↵orts to build distributed run-times for more advanced analytical tasks.
For example, Hyracks [27], HaLoop [32] and AMPLab’s Spark [72, 6] have special iterative in-
memory operations to better support ML algorithms. As mentioned earlier, the goal of this project
is not on inventing a new run-time for machine learning; instead we will use Spark.

SystemML [46] proposes an R-like language and shows how it can be optimized and compiled down
to MapReduce. However, SystemML tries to support ML experts to develop e�cient distributed
algorithms and does not aim at simplifying the use of ML, for example, by automatically tuning the
training step. Still, the ideas of SystemML are compelling and we might leverage them as part of our
physical plan optimization. In [41], the authors show how many ML algorithms can be expressed as
a relational-friendly convex-optimization problem, whereas the authors of [70] present techniques
to optimize inference algorithms in a probabilistic DBMS. We leverage these techniques in our
run-time, but our system aims beyond a single machine and extends the presented optimization
techniques.

This project builds on the strong foundation of declarative languages and query optimization.

11

0%#
10%#
20%#
30%#
40%#
50%#
60%#
70%#
80%#
90%#
100%#

a1a# australian# breast# diabetes# fourclass# splice#

Ac
cu
ra
cy
'

10^=6#

10^=3#

1#

10^3#

10^6#

(a) Impact of di↵erent � =

1
d ⇥{10�6, 10�3, 1, 103, 106}

on the SVM accuracy with an RBF kernel and � = 10

�6

on LIBSVM data-sets

0%#

10%#

20%#

30%#

40%#

50%#

60%#

70%#

80%#

90%#

100%#

a1a# australian# breast# diabetes# fourclass# splice#

Ac
cu
ra
cy
' 25#

50#

100#

200#

(b) Impact of r = {25, 50, 100, 200} on AdaBoost on

LIBSVM data-sets

Figure 4: Parameter Impact

4 Related Work

COML is not the first system trying to make machine learning more accessible, but it is the first to
free users from algorithm choices and to automatically optimize for distributed execution. Probably
most related to COML are Weka [4], MADLib [47], and Mahout [3]. Weka is a collection of ML
tools for data mining that simplifies their usage by providing a simple UI. Weka, however, requires
expert knowledge to choose and configure the ML algorithm and is a single node system. On the
database and distributed side, Mahout’s goal is to build a scalable ML library on top of Hadoop,
while MADLib provides an ML library for relational database systems. Neither system addresses
the (di�cult but necessary) challenge of optimizing the learning algorithms.

Google Predict [2] is Google’s proprietary web-service for prediction problems, but restricts the
maximum training data-size to 250MB. In [18], the authors make the case that databases should
natively support predictive models and present a first prototype called Longview. We extend this
vision by supporting all kinds of ML algorithms, not just predictive models. Furthermore, the
focus of this project is on the optimization for ML instead of the language integration within the
relational model.

Recently, there have been e↵orts to build distributed run-times for more advanced analytical tasks.
For example, Hyracks [27], HaLoop [32] and AMPLab’s Spark [72, 6] have special iterative in-
memory operations to better support ML algorithms. As mentioned earlier, the goal of this project
is not on inventing a new run-time for machine learning; instead we will use Spark.

SystemML [46] proposes an R-like language and shows how it can be optimized and compiled down
to MapReduce. However, SystemML tries to support ML experts to develop e�cient distributed
algorithms and does not aim at simplifying the use of ML, for example, by automatically tuning the
training step. Still, the ideas of SystemML are compelling and we might leverage them as part of our
physical plan optimization. In [41], the authors show how many ML algorithms can be expressed as
a relational-friendly convex-optimization problem, whereas the authors of [70] present techniques
to optimize inference algorithms in a probabilistic DBMS. We leverage these techniques in our
run-time, but our system aims beyond a single machine and extends the presented optimization
techniques.

This project builds on the strong foundation of declarative languages and query optimization.

11

SVM	

AdaBoost	

regulariza"on	

Scale-­‐factor	

Why	
 Op"mize?	

	
 Speed	

•  Running	
 1	
 algorithm	
 tends	
 to	
 be	
 I/O	
 bound	

•  Idea:	
 train	
 in	
 parallel	
 with	
 different	
 algorithms	

and	
 parameters	
 à	
 Similar	
 to	
 shared	
 cursors	

in	
 DB-­‐world	

•  Ques"ons:	

– How	
 many	
 models?	
 	

à	
 How	
 to	
 make	
 it	
 cache-­‐aware	

–  Impact	
 of	
 sampling?	

– How	
 to	
 leverage	
 modern	
 CPUs,	
 in	
 par"cular	

vectoriza"on	
 and	
 CPU	
 pipelining?	

Direc"on	

•  Released:	

–  MLI	
 interface	

–  Half-­‐full	
 binders	
 as	
 part	
 of	
 Spark	

–  Some	
 simple	
 feature	
 extractors	

–  (End-­‐to-­‐end	
 use	
 cases)	

•  Working	
 on:	

–  Op"miza"on	
 techniques	
 	

–  Cost-­‐based	
 op"mizer	

–  Unified	
 language	
 for	
 end	
 users	
 and	
 ML	
 developers	

–  Advanced	
 ML	
 capabili"es:	
 Time-­‐series	
 algorithms,	
 graphical	

models,	
 advanced	
 op"miza"ons,	
 online	
 updates,	
 sampling	
 for	

efficiency	

–  Integra"on	
 into	
 TupleWare:	
 High-­‐Performance	
 analy"c	
 pla|orm	

–  Visualiza"on	

	

MLBase	
 -­‐	
 Summary	

•  MLbase	
 is	
 a	
 first	
 declara1ve	
 machine-­‐learning	

system	

•  It	
 simplifies	
 ML	
 in	
 the	
 same	
 way	
 as	
 databases	

simplify	
 data	
 management	

•  Teaser:	
 TupleWare	
 will	
 integrate	
 Mlbase	

and	
 leverage	
 ideas	
 from	
 programming	

languages	
 to	
 significantly	
 speed-­‐up	
 ML	

and	
 explora"ve	
 data	
 analysis	

Tim	
 Kraska	
 	

"m_kraska@brown.edu	

