
UC Berkeley

Tim	 Kraska	 <"m_kraska@brown.edu>	

baseML

baseML

baseML

baseML

ML base

ML base

ML base

ML base

ML base

1	 PetaByte	 reported	 every	 second	 by	 LHC	 	

My	 Hidden	 Mo1va1on	

Why	 is	 it	
hard?	 damn	

so	 	

Volume	 Variety	

Velocity	

Tool	 complexity	

Mul1-‐hypotheses	 	
Pi?all	

Explora1ve	

Everybody	 thinks	 about	 	

Data	 …not	 Queries	

Brown	 Projects	

-‐Store	 DBNav	

TupleWare	

Data	 Tamer	
baseML

baseML

baseML

baseML

ML base

ML base

ML base

ML base

ML base

baseML

baseML

baseML

baseML

ML base

ML base

ML base

ML base

ML base

DB-‐hard	 Queries	

8	

SELECT Market_Cap
From Companies
Where Company_Name = “IBM”

Number of Rows: 0

Problem:
Entity Resolution

Company_Name	 Address	 Market	 Cap	

Google	 Googleplex,	 Mtn.	 View	 CA	 $210Bn	

Intl.	 Business	 Machines	 Armonk,	 NY	 $200Bn	

MicrosoS	 Redmond,	 WA	 $250Bn	

DB-‐hard	 Queries	

9	

SELECT Market_Cap
From Companies
Where Company_Name = “Apple”

Number of Rows: 0

Problem:
Missing Data

Company_Name	 Address	 Market	 Cap	

Google	 Googleplex,	 Mtn.	 View	 CA	 $210Bn	

Intl.	 Business	 Machines	 Armonk,	 NY	 $200Bn	

MicrosoS	 Redmond,	 WA	 $250Bn	

10	

SELECT Image
From Pictures
Where Image contains
“professor with beard”

Number of Rows: 0

Problem:
Missing Intelligence

DB-‐hard	 Queries	

Easy	 Queries	

11	

SELECT Image
From Pictures
Where Image contains
“professor with beard”

Micro-‐Task	 CrowdSourcing	

12	

Overview	

13	

Problem	

•  How	 to	 integrate	 this	 new	 resource	
“humans”	 for	 DB-‐hard	 queries	

•  How	 to	 ensure	 high-‐quality	 results	

Contribu1ons	

•  CrowdDb	 Systems	
•  Architecture	
•  Query	 language	
•  Query	 execu"on	

•  Quality	 Control	 for	 Sets	

Queries	 in	 the	 Open	 World	

CREATE CROWD TABLE PEOPLE(name,
age, picture, beard, occupation)!
	

14	

Big	 Ques1ons	

When	 should	 we	 stop	 asking	
ques1ons?	
	

Can	 we	 es1mate	 query	
result	 set	 size?	

15	

Querying	 the	 crowd	

16	

•  SELECT	 name	 FROM	 US_States	
– Experiment	 runs	 on	 Mechanical	 Turk	
– Avg.	 “accumula"on	 curve”	

0 50 100 150 200 250 300

0
10

20
30

40
50

States: unique items

Answers (HITs)

av
g

un

iq
ue

 a
ns

we
rs

#	 responses	

	
Avg	 #	 unique	
answers	

	
	

Species	 es"ma"on	

17	

Species	 es"ma"on	
•  Sample	 drawn	 from	 a	 popula"on	
–  There	 are	 N	 different	 types	 within	 the	 popula"on,	 N	
unknown	

– Analog:	 worker	 answers	 are	 samples	 from	 item	
distribu"on	

N	

pr
ob

ab
ili
ty
	

18	

sample	 Answers	

•  Calculate	 query	 progress	
–  based	 on	 es"mate	 of	 N	
– Use	 Chao92	 es"mator,	 suitable	 for	 open-‐world	

Worker	 behavior:	 example	

•  United	 Na"ons	 member	 countries	 (192)	
– Simulated	 vs.	 actual	 cardinality	 es"mate	

19	

200 400 600 800

0
50

10
0

15
0

20
0

25
0

30
0

answers

ch
ao

92
 e

st
im

at
e

actual
expected

Worker	 behavior	

20	

!₁

#

!₂ !₃

(A, B, C, D, F, A, G, B, A, ….)

…

A B C D E F G H I J K...

#

(A, B, G, H, F, I, A, E, E, K, ….)

(a) Database Sampling (B) Crowd Based Sampling

#&= sampling process with replacement
!&= sampling process without replacement

W
orker

Processes
W

orker
Arrival Process

A B C D E F G H I J K... A B C D E F G H I J K... A B C D E F G H I J K...

“Streakers”[Heer10]	

21	

worker

of
 a

ns
we

rs

0
5

10
20

30

of

 a
ns

we
rs

0
50

10
0

15
0

20
0 UN 2

workers	

	
#	 answers	
	
	
	

	
	

Streakers	 provide	 a	 lot	 of	 unique	 answers	

Streaker-‐tolerant	 es"mator	

•  Chao92	 es"mator	
– Non-‐parametric,	 “frequency	 of	 frequencies”	 sta"s"c	

•  f1	 =	 singletons,	 f2	 	 =	 doubletons,	 f0	 	 =	 unobserved	
•  Uses	 no"on	 of	 sample	 coverage:	 	

22	

IV. STREAKER-TOLERANT COMPLETENESS ESTIMATOR

Our goal is to provide the user with a progress estimate
for an open-world query based on the answers that have been
gathered so far. However, in the last section we demonstrated
how having a crowd of humans enumerate a set creates a
two-layer sampling process, and that the order in which items
arrive depends heavily on different worker behaviors—which
impacts the accuracy of the estimator.

In this section, we extend the Chao92 algorithm to make
the estimator more robust against the impact of individual
workers. We focus our effort mainly on reducing the impact
of streakers and worker arrival, and exclude for now cases for
which we can not make a good prediction, discussed in the
following subsections in more detail. We first introduce the
basic estimator model and Chao92 more formally before we
present our extension that handles streaker impact. Finally,
we evaluate our technique by first proposing a new metric
that incorporates the notions of estimate stability and fast
convergence to the true cardinality, then applying this metric
to measure the effectiveness of our technique using various
use cases in addition to the UN.

A. Basic Estimator Model and F-Statistic

Receiving answers from workers is analogous to drawing
samples from some underlying distribution of unknown size
N ; each answer corresponds to one sample from the item
distribution. We can rephrase the problem as a species esti-
mation problem as follows: The set of HITs received from
AMT is a sample of size n drawn from a population in which
elements can be from N different classes, numbered 1 � N
(N , unknown, is what we seek); c is the number of unique
classes (species) seen in the sample. Let ni be the number of
elements in the sample that belong to class i, with 1 ⇥ i ⇥ N .
Of course some ni = 0 because they have not been observed
in the sample. Let pi be the probability that an element from
class i is selected by a worker,

⇧N
i=1 pi = 1; such a sample

is often described as a multinomial sample [12].
One might try to estimate the underlying distribution

{p1, ..., pN } in order to predict the cardinality N . However,
Burnham and Overton show in [17] that the aggregated
“frequency of frequencies”-statistic (hereon f -statistic) is suf-
ficient for estimating the number of unobserved species for
non-parametric algorithms. The f -statistic captures the relative
frequency of observed classes in the sample. For a population
that can be partitioned into N classes (items), and given a
sample of size n, let fj be the number of classes that have
exactly j members in the sample. Note f1 represents the
“singletons” and f2 the “doubletons”. The goal is to estimate
the cardinality by predicting f0, the number of unseen classes.

B. The Chao92 Estimator

Our technique is based on the Chao92 [14] estimator, which
uses sample coverage to predict N . The sample coverage C is
the sum of the probabilities pi of the observed classes. How-
ever, since the underlying distribution p1...pN is unknown, the

Good-Turing estimator [19] using the f -statistic is used:

Ĉ = 1 � f1/n (1)

Furthermore, the Chao92 estimator attempts to explicitly char-
acterize and incorporate the skew of the underlying distribution
using the coefficient of variance (CV), denoted �, a metric
that can be used to describe the variance in a probability
distribution [14]; we can use the CV to compare the skew of
different class distributions. The CV is defined as the standard
deviation divided by the mean. Given the pi’s (p1 · · · pN)
that describe the probability of the ith class being selected,
with mean p̄ =

⇧
i pi/N = 1/N , the CV is expressed as

� =
�⇧

i(pi � p̄)2/N
⇥1/2 / p̄ [14]. A higher CV indicates

higher variance amongst the pi’s, while a CV of 0 indicates
that each item is equally likely.

The true CV cannot be calculated without knowledge of the
pi’s, so Chao92 uses an estimate �̂ based on the f -statistic:

�̂2 = max
⇤

c
Ĉ

⇧
i i(i � 1)fi

n(n � 1) � 1 , 0
⌅

(2)

The final estimator is then defined as:

N̂chao92 = c

Ĉ
+ n(1 � Ĉ)

Ĉ
�̂2 (3)

Note that if �̂2 = 0 (i.e., indicating a uniform distribution),
the estimator reduces to c/Ĉ.

C. An Estimator for Crowdsourced Enumeration
The Chao92 estimator is heavily influenced by the presence

of rare items in the sample; the coverage estimate Ĉ is
based entirely on the percentage of singleton answers (f1s).
Recall from Section III the different crowd behaviors—many
of them result in rapid arrival of unique answers. When unique
items appear “too quickly”, the estimator interprets this as
a sign the complete set size is larger than it truly is. We
develop an estimator based on Chao92 that ameliorates some
of the overestimation issues caused by an overabundance of
f1 answers.

Most of the dramatic overestimation occurs in the presence
of streakers, i.e., significant skew in the amount of answers
provided by each worker. Notably, problems occur when one
or a few workers contribute substantially more answers than
others, possibly also drawing answers from a different data
distribution. As other workers are not given the opportunity
to provide answers that would subsequently increase the f2s,
f3s, etc. in the sample, Chao92 predicts a full set cardinality
that is too large. Thus our estimator is designed to identify any
worker(s) who are outliers with respect to their contribution
of unique answers in the sample (their f1 answers).

The idea behind making the Chao92 estimator more resilient
against streakers is to alter the f -statistic. The first step is
to identify those workers who are “f1 outliers”. We define
outlier in a traditional sense, two standard deviations outside
the mean of all workers W . To avoid false negatives due to
a true outlier’s influence on the mean and standard deviation,
both statistics are calculated without including the potential

IV. STREAKER-TOLERANT COMPLETENESS ESTIMATOR

Our goal is to provide the user with a progress estimate
for an open-world query based on the answers that have been
gathered so far. However, in the last section we demonstrated
how having a crowd of humans enumerate a set creates a
two-layer sampling process, and that the order in which items
arrive depends heavily on different worker behaviors—which
impacts the accuracy of the estimator.

In this section, we extend the Chao92 algorithm to make
the estimator more robust against the impact of individual
workers. We focus our effort mainly on reducing the impact
of streakers and worker arrival, and exclude for now cases for
which we can not make a good prediction, discussed in the
following subsections in more detail. We first introduce the
basic estimator model and Chao92 more formally before we
present our extension that handles streaker impact. Finally,
we evaluate our technique by first proposing a new metric
that incorporates the notions of estimate stability and fast
convergence to the true cardinality, then applying this metric
to measure the effectiveness of our technique using various
use cases in addition to the UN.

A. Basic Estimator Model and F-Statistic

Receiving answers from workers is analogous to drawing
samples from some underlying distribution of unknown size
N ; each answer corresponds to one sample from the item
distribution. We can rephrase the problem as a species esti-
mation problem as follows: The set of HITs received from
AMT is a sample of size n drawn from a population in which
elements can be from N different classes, numbered 1 � N
(N , unknown, is what we seek); c is the number of unique
classes (species) seen in the sample. Let ni be the number of
elements in the sample that belong to class i, with 1 ⇥ i ⇥ N .
Of course some ni = 0 because they have not been observed
in the sample. Let pi be the probability that an element from
class i is selected by a worker,

⇧N
i=1 pi = 1; such a sample

is often described as a multinomial sample [12].
One might try to estimate the underlying distribution

{p1, ..., pN } in order to predict the cardinality N . However,
Burnham and Overton show in [17] that the aggregated
“frequency of frequencies”-statistic (hereon f -statistic) is suf-
ficient for estimating the number of unobserved species for
non-parametric algorithms. The f -statistic captures the relative
frequency of observed classes in the sample. For a population
that can be partitioned into N classes (items), and given a
sample of size n, let fj be the number of classes that have
exactly j members in the sample. Note f1 represents the
“singletons” and f2 the “doubletons”. The goal is to estimate
the cardinality by predicting f0, the number of unseen classes.

B. The Chao92 Estimator

Our technique is based on the Chao92 [14] estimator, which
uses sample coverage to predict N . The sample coverage C is
the sum of the probabilities pi of the observed classes. How-
ever, since the underlying distribution p1...pN is unknown, the

Good-Turing estimator [19] using the f -statistic is used:

Ĉ = 1 � f1/n (1)

Furthermore, the Chao92 estimator attempts to explicitly char-
acterize and incorporate the skew of the underlying distribution
using the coefficient of variance (CV), denoted �, a metric
that can be used to describe the variance in a probability
distribution [14]; we can use the CV to compare the skew of
different class distributions. The CV is defined as the standard
deviation divided by the mean. Given the pi’s (p1 · · · pN)
that describe the probability of the ith class being selected,
with mean p̄ =

⇧
i pi/N = 1/N , the CV is expressed as

� =
�⇧

i(pi � p̄)2/N
⇥1/2 / p̄ [14]. A higher CV indicates

higher variance amongst the pi’s, while a CV of 0 indicates
that each item is equally likely.

The true CV cannot be calculated without knowledge of the
pi’s, so Chao92 uses an estimate �̂ based on the f -statistic:

�̂2 = max
⇤

c
Ĉ

⇧
i i(i � 1)fi

n(n � 1) � 1 , 0
⌅

(2)

The final estimator is then defined as:

N̂chao92 = c

Ĉ
+ n(1 � Ĉ)

Ĉ
�̂2 (3)

Note that if �̂2 = 0 (i.e., indicating a uniform distribution),
the estimator reduces to c/Ĉ.

C. An Estimator for Crowdsourced Enumeration
The Chao92 estimator is heavily influenced by the presence

of rare items in the sample; the coverage estimate Ĉ is
based entirely on the percentage of singleton answers (f1s).
Recall from Section III the different crowd behaviors—many
of them result in rapid arrival of unique answers. When unique
items appear “too quickly”, the estimator interprets this as
a sign the complete set size is larger than it truly is. We
develop an estimator based on Chao92 that ameliorates some
of the overestimation issues caused by an overabundance of
f1 answers.

Most of the dramatic overestimation occurs in the presence
of streakers, i.e., significant skew in the amount of answers
provided by each worker. Notably, problems occur when one
or a few workers contribute substantially more answers than
others, possibly also drawing answers from a different data
distribution. As other workers are not given the opportunity
to provide answers that would subsequently increase the f2s,
f3s, etc. in the sample, Chao92 predicts a full set cardinality
that is too large. Thus our estimator is designed to identify any
worker(s) who are outliers with respect to their contribution
of unique answers in the sample (their f1 answers).

The idea behind making the Chao92 estimator more resilient
against streakers is to alter the f -statistic. The first step is
to identify those workers who are “f1 outliers”. We define
outlier in a traditional sense, two standard deviations outside
the mean of all workers W . To avoid false negatives due to
a true outlier’s influence on the mean and standard deviation,
both statistics are calculated without including the potential

•  Adding	 streaker-‐tolerance	
–  Es"mator	 over-‐predicts	 cardinality	 with	 abundance	 of	
unique	 answers	 (f1)	

–  Remove	 f1	 outliers	

(a) UN 1

200 400 600 800

0
10

0
20

0
30

0

answers

ch
ao

92
 e

st
im

at
e

�
orig

= 0.14
�

new

= 0.087

(b) UN 2

200 400 600 800

0
10

0
20

0
30

0

answers

ch
ao

92
 e

st
im

at
e

�
orig

= 0.11
�

new

= 0.099

(d) UN 3

200 400 600 800

0
10

0
20

0
30

0

answers

ch
ao

92
 e

st
im

at
e

�
orig

= 0.065
�

new

= 0.058

(e) UN 4

200 400 600 800

0
10

0
20

0
30

0

answers

ch
ao

92
 e

st
im

at
e

�
orig

= 0.18
�

new

= 0.28

(f) States 1

50 100 150 200 250

0
20

40
60

80
10

0

answers

ch
ao

92
 e

st
im

at
e

�
orig

= 0.046
�

new

= 0.053

(g) States 2

50 100 150 200 250

0
20

40
60

80
10

0

answers

ch
ao

92
 e

st
im

at
e

�
orig

= 0.028
�

new

= 0.024

(h) States 3

50 100 150 200 250

0
20

40
60

80
10

0

answers

ch
ao

92
 e

st
im

at
e

�
orig

= 0.033
�

new

= 0.068

0 2 4 6 8 10

2
4

6
8

10

c(1, 1)

c(
1,

 1
0)

original
crowd estimator
true value

Fig. 7. Estimator results on representative UN country and US states experiments

outlier’s f1 count. The f1 count of worker i is compared to
the mean x̄i and the sample standard deviation ⇥̂i:

x̄i =
⇥

⇥j,j �=i

f1(j)
W � 1 ⇥̂i =

⇧⌅⌅⇤
⇥

⇥j,j �=i

(f1(j) � x̄i)2

W � 2 (4)

We create f̃1 from the original f1 by reducing each worker
i’s f1-contribution to fall within 2⇥̂i + x̄i:

f̃1 =
⇥

i

min(f1(i), 2⇥̂i + x̄i) (5)

The final estimator is similar to equation 3 except that it
uses the f̃1 statistic. For example, with a coefficient of variance
�̂2 = 0, it would simplify to:

N̂crowd = cn

n �
�

i min(f1(i), 2⇥̂i + x̄i)
(6)

Although a small adjustment, N̂crowd is more robust against
the impact of streakers than the original Chao92, as we show
in our evaluation next.

D. Experimental Results

We ran over 30,000 HITs on AMT for set enumeration
tasks to evaluate our technique. Several CROWD tables we
experimented with include small and large well-defined sets
like NBA teams, US states, UN member countries, as well as
sets that can truly leverage human perception and experience
like indoor plants with low-light needs, restaurants in San
Francisco serving scallops, slim-fit tuxedos, and ice cream
flavors. Workers were paid $0.01-$0.05 to provide one item
in the result set using the UI shown in Figure 3; they were
allowed to complete multiple tasks if they wanted to submit
more than one answer. In the remainder of this paper we focus
on a subset of the experiments, some with known cardinality
and fixed membership, US states (nine experiment runs) and
UN member countries (five runs), as well as more open ended
queries like plants, restaurants, tuxedos, and ice cream flavors
(one run each).

1) Error Metric: Due to a lack of a good metric to evaluate
estimators with respect to stability and convergence rate, we
developed an error metric � that captures bias (absolute
distance from the true value), as well as the estimator’s time to
convergence and stability. The idea is to weight the magnitude
of the estimator’s bias more as the size of the sample increases.
Let N denote the known true value, and N̂i denote the estimate
after i samples. After n samples, � is defined as:

� =
�n

i=1 |N̂i � N |i�
i

= 2
�n

i=1 |N̂i � N |i
n(n + 1) (7)

A lower � value means a smaller averaged bias and thus,
a better estimate. The weighting renders a harsher penalty
for incorrectness later on than in the beginning, in addition
to penalizing an estimator that takes longer to reach the true
value; this addresses the convergence rate criteria. The error
metric also rewards estimators for staying near the true value.

2) Results: UN and States: We first illustrate how N̂crowd

behaves for a representative set of UN member countries and
US states experiments; we elide the full set for space reasons.
For both experiments the UI from Figure 3 was shown by
CrowdDB to ask for an UN member country, respectively
US state, on AMT for $0.01 cents per task. Figures 7(a-
h) show cardinality estimates as well as the � metric for
the selected experiments. We observed that our estimate has
an improvement over Chao92 for most UN experiments we
performed as Figure 7(a) and (b) show. In UN 1 our estimates
reduces the overestimation of Chao92 that occurred during the
middle of the experiment. In the UN 2 experiment, one streaker
dominated the total answer set at the beginning—a substantial
outlier. Once his contribution was reduced dramatically, the
remaining workers’ answers had significant overlap because
most were enumerating the list of nations alphabetically,
resulting in a low cardinality because of the heavily skewed
data distribution this scenario creates. Recall from the previous
section that the expected behavior of the estimator in this
case is to under-predict. In contrast, the third UN experiment
run had several streakers at the beginning who each had
very different data distributions (i.e., enumerating the list of
nations from different alphabetical start points). While the
heuristic helped level the f1 contribution from these workers,

with	 coefficient	 of	 variance	 =	 0	 	

Streaker-‐tolerant	 es"mator:	 results	

•  “UN	 member	 na"ons”	 	
(run	 1)	
– Streaker	 during	 the	
middle	 ameliorated	

23	

200 400 600 800

0
10

0
20

0
30

0

answers

ch
ao

92
 e

st
im

at
e

0 2 4 6 8 10

2
4

6
8

10

c(1, 1)
c(

1,
 1

0)

original
crowd estimator
true value

200 400 600 800

0
10

0
20

0
30

0

answers

ch
ao

92
 e

st
im

at
e

0 2 4 6 8 10

2
4

6
8

10

c(1, 1)

c(
1,

 1
0)

original
crowd estimator
true value

•  “UN	 member	 na"ons”	 	
(run	 2)	
–  Streaker	 at	 beginning	
–  Other	 workers	 shared	
skewed	 distribu"on,	 yields	
low	 cardinality	 es"mate	

Now	 that	 we	
have	 the	 data…	

…how	 do	 we	
analyze	 it	

The	 Liqle	 Secret	

Machine	 Learning	 is	 like	 Teenage	 Sex	
-‐  Everybody	 talks	 about	 it	
-‐  Nobody	 knows	 how	 to	 do	 it	
-‐  Everyone	 thinks	 everyone	 else	 is	 doing	 it	
-‐  So	 everyone	 claims	 they	 are	 doing	 it	

The	 Problem	

Build	 a	 Classifier	

What	 you	 want	 to	 do	 What	 you	 have	 to	 do	
•  Learn	 the	 internals	 of	 ML	

classifica1on	 algorithms,	 sampling,	
feature	 selec1on,	 X-‐valida1on,….	

•  Poten1ally	 learn	 Spark/Hadoop/…	
•  Implement	 3-‐4	 algorithms	
•  Implement	 grid-‐search	 to	 find	 the	

right	 algorithm	 parameters	
•  Implement	 valida1on	 algorithms	
•  Experiment	 with	 different	 sampling-‐

sizes,	 algorithms,	 features	
•  ….	

and	 in	 the	 end	

Ask	 For	 Help	

1st Goal: Simplify the use of ML algorithms
2nd Goal: Make it easier to implement distributed ML algorithms

	 A.	 Talwalkar	 E.	 Sparks	

Collaborators	

and	 others…..	

A	 Declara"ve	 Approach	 to	 ML	

SQL	 Result	

A	 Declara"ve	 Approach	 to	 ML	

SQL	 Result	 MQL	 Model	

Use	 Cases	

var	 X	 =	 load("als_clinical",	 2	 to	 10)	
var	 y	 =	 load("als_clinical",	 1)	
var	 (fn-‐model,	 summary)	 =	 top(doClassify(X,	 y),	 5min)	

var	 G	 =	 loadGraph("twiqer_network")	 	
var	 hubs-‐nodes	 =	 findTopKDegreeNodes(G,	 k	 =	 1000)	 	
var	 text-‐features	 =	 textFeaturize(load("twiqer_tweet_data"))	 	
var	 T-‐hub	 =	 join(hub-‐nodes,	 "u-‐id",	 text-‐features,	 "u-‐id")	
findTopFeatures(T-‐hub)	 	

Supervised	 Classifica"on:	 ALS	 Predic"on	 	

Unsupervised	 Feature	 Extrac"on:	 Twiqer	

Use	 Cases	

var	 X	 =	 load("als_clinical",	 2	 to	 10)	
var	 y	 =	 load("als_clinical",	 1)	
var	 (fn-‐model,	 summary)	 =	 top(doClassify(X,	 y),	 5min)	

Supervised	 Classifica"on:	 ALS	 Predic"on	 	

Hints	

var	 X	 =	 load("als_clinical",	 2	 to	 10)	
var	 y	 =	 load("als_clinical",	 1)	
var	 (fn-‐model,	 summary)	 =	 top(doClassify(X,	 y,	 SVM),	 5min)	

Supervised	 Classifica"on:	 ALS	 Predic"on	 	

Streaming-‐like	 Data	 Model	

Infinite	 ordered	 stream	 of	 items,	 being	 either	
models	 (i.e.,	 higher-‐ordered	 func"ons)	 or	 tuples	

	

	
	

Model	
4	

Model	
3	

Model	
2	

Model	
1	

do
Cl
as
sif
y	

to
p	

Model	
2	

ML Developer

Meta-Data

Statistics

User

Declarative
ML Task

ML Contract +
Code

Master Server

….

result
(e.g., fn-model & summary)

COML
(Optimizer)

Parser

Executor/Monitoring

Binders of
Algorithms

Runtime Runtime Runtime Runtime

LLP

PLP

M
aster

MLbase	 Architecture	

Binders	 full	 of	
algorithms	
allows	 to	 add	 	
more	
operators	 	

Sta1s1cs	
about	 algorithms	
and	 data	

Adap1ve	
Op1mizer	
es"mates	 run-‐
"me	 and	 quality	
improvement	

MLI	
Interface	 to	 simplify	
implemen"ng	 distr.	
ML	 algorithms	

1	

2	

3	

3	

ML Developer

Meta-Data

Statistics

User

Declarative
ML Task

ML Contract +
Code

Master Server

….

result
(e.g., fn-model & summary)

COML
(Optimizer)

Parser

Executor/Monitoring

Binders of
Algorithms

Runtime Runtime Runtime Runtime

LLP

PLP

M
aster

MLbase	 Architecture	

Binders	 full	 of	
algorithms	
allows	 to	 add	 	
more	
operators	 	

Sta1s1cs	
about	 algorithms	
and	 data	

Adap1ve	
Op1mizer	
es"mates	 run-‐
"me	 and	 quality	
improvement	

MLI	
Interface	 to	 simplify	
implemen"ng	 distr.	
ML	 algorithms	

1	

2	

3	

3	

MLI:	 Machine	 Learning	 Interface	

•  Shield	 ML	 Developers	 from	 low-‐level-‐details:	 provide	
familiar	 mathema"cal	 operators	 in	 distributed	 sewng	

•  Physical	 independence	 between	 ML	 algorithm	 and	 run-‐
"me	

•  Ini"al	 abstrac"ons:	 MLTable,	 MLMatrix,	 MLOpt	
•  Current	 supported	 run-‐"mes:	

1	

TupleWare	

MLTable	

•  Flexibility	 when	 loading	
data	 	
–  e.g.,	 CSV,JSON,XML	 	
–  Heterogeneous	 data	 across	
columns	 	

– Missing	 Data	 	
–  Feature	 extrac"on	 	

•  Common	 Interface	 	
•  Supports	 MapReduce	 and	 	
Rela"onal	 Operators	

•  Inspired	 by	 DataFrames	 (R)	
and	 Pandas	 (Python)	 	

38	

MLSubMatrix	

•  Linear	 algebra	 on	 local	
par11ons	
–  E.g.,matrix-‐vector	
opera"ons	 for	 mini-‐
batch	 logis"c	 regression	

–  E.g.,	 solving	 linear	
systems	 of	 equa"ons	 for	
Alterna"ng	 Least	
Squares	

•  Sparse	 and	 Dense	
Matrix	 Support	

MLSubMatrix

✦ Linear%algebra%on%local%parAAons
✦ E.g.,$matrixFvector$opera2onsfor

miniFbatch$logis2c$regression
✦ E.g.,$solving$linear$system$of$equa2ons$

for$Alterna2ng$Least$Squares

✦ Sparse%and%Dense%Matrix%Support

MLSolve	

•  Distributed	
implementa1ons	 of	
common	 op1miza1on	
pa_erns	
–  E.g.,	 Stochas"c-‐Gradient-‐
Descent:	 Applicable	 to	
summable	 ML	 losses	

–  E.g.,	 LBFGS:	 An	
approximate	 2nd	 order	
op"miza"on	 method	

–  E.g.,	 ADMM:	
Decomposi"on	 /	
coordina"on	 procedure	

MLSolve

✦ Distributed%implementaAons%of%
common%opAmizaAon%paZerns

✦ E.g.,$Stochas2c$Gradient$Descent:$
ApplicabletosummableMLlosses

✦ E.g.,$LBFGS:$An$approximate$2ndF
order$op2miza2on$method$

✦ E.g.,$ADMM:$Decomposi2on$/$
coordina2on$procedure

ML Developer

Meta-Data

Statistics

User

Declarative
ML Task

ML Contract +
Code

Master Server

….

result
(e.g., fn-model & summary)

COML
(Optimizer)

Parser

Executor/Monitoring

Binders of
Algorithms

Runtime Runtime Runtime Runtime

LLP

PLP

M
aster

MLbase	 Architecture	

Binders	 full	 of	
algorithms	
allows	 to	 add	 	
more	
operators	 	

Sta1s1cs	
about	 algorithms	
and	 	 data	

Adap1ve	
Op1mizer	
es"mates	 run-‐
"me	 and	 quality	
improvement	

MLI	
Interface	 to	 simplify	
Implemen"ng	 distr.	
ML	 algorithms	

1	

2	

3	

3	

Binders	 Full	 of	 Algorithms	

Implementa1on	
On	 top	 of	 MLI	 	
(with	 op"miza"on	 hints)	

Contract	
•  Type	 (e.g.,	 classifica"on)	
•  Parameters	
•  Run"me	 (e.g.,	 O(n))	
•  Input-‐Specifica"on	
•  Output-‐Specifica"on	
•  …	

ML Developer

+	

2	

Today:	 Half-‐Full	 Binders	
•  Regression:	 Linear	 Regression	 (+Lasso,	 Ridge)	 	
•  Classifica1on:	 Logis"c	 Regression,	 Linear	 SVM	 (+L1,	 L2),	
Mul"nomial	 Regression,	 [Naïve	 Bayes,	 Decision	 Trees]	 	

•  Collabora1ve	 Filtering:	 Alterna"ng	 Least	 Squares,	 [DFC]	 	
•  Clustering:	 K-‐Means,	 [DP-‐Means]	
•  Op1miza1on	 Primi1ves:	 SGD,	 Parallel	 Gradient,	 [L-‐BFGS,	
ADMM,	 Adagrad]	

•  Feature	 Extrac1on:	 [PCA],	 N-‐grams,	 feature	 cleaning	
normaliza"on	

•  Other	 tools:	 Cross	 Valida"on,	 Evalua"on	 Metrics	
•  Released	 as	 part	 of	 Spark	 and	 MLlib	

Example:	 Alterna"ng	 Least	 Squares	 	

System	 	 Lines	 of	 Code	 	

Matlab	 	 20	 	

Mahout	 	 865	 	

GraphLab	 	 383	 	

MLI	 	 32	 	

MLbase GraphLab Mahout Matlab−mex
0

0.5

1

1.5

2 x 104

w
al

lti
m

e
(s

)

1 Machine
4 Machines
9 Machines
16 Machines
25 Machines

ML Developer

Meta-Data

Statistics

User

Declarative
ML Task

ML Contract +
Code

Master Server

….

result
(e.g., fn-model & summary)

COML
(Optimizer)

Parser

Executor/Monitoring

Binders of
Algorithms

Runtime Runtime Runtime Runtime

LLP

PLP

M
aster

MLbase	 Architecture	

Binders	 full	 of	
algorithms	
allows	 to	 add	 	
more	
operators	 	

Sta1s1cs	
about	 algorithms	
and	 	 data	

Adap1ve	
Op1mizer	
es"mates	 run-‐
"me	 and	 quality	
improvement	

MLI	
Interface	 to	 simplify	
implemen"ng	 distr.	
ML	 algorithms	

1	

2	

3	

3	

var	 X	 =	 load("als_clinical",2	 to	 10)	
var	 y	 =	 load("als_clinical",	 1)	 	
var	 (fn-‐model,	 summary)	 =	 	
	 	 	 	 	 	 	 	 top(doClassify(X,	 y),	 10min)	

MQL	

Op"miza"on	 3	

standard feature
normalizer

create 10-folds

cross
validation

folds

(X'', y'')

SVM
kernel: RBF

λ=10⁶ σ = 1/d ⨉ 10⁶

(model-params,
cross-validation-summary)

top-1

train model

calculate
misclassification

rate

(fn-model, summary)

(X, y)

….

cross
validation

SVM
kernel: RBF

λ=10³ σ= 1/d ⨉ 10⁶

cross
validation

AdaBoost
rounds = 20

baseline-check:
nearest neighbor

baseline-check:
most common

label

(model-params,
cross-validation-summary)

fn-model

load (als_clinical)

down-sample 10%

(X, y)

(X', y')

store
normalized folds

fn-model

Execu1on	 Plan	

1. Return	 meaningful	 results	
2. Op"mize	 the	 whole	
processing	 pipeline	

3. Op"mize	 quality	 and	 1me	
simultaneously	

Op"miza"on	 Goals	

Current	 Op"miza"on	 Approach	

Idea:	 3-‐Step	 Process	

Expand	
(Avoid	 pi|alls)	 	

Candidate	
Genera"on	
(Quality)	

Physical	
Op"miza"on	

(Speed)	

var	 X	 =	 load("als_clinical",2	 to	 10)	
var	 y	 =	 load("als_clinical",	 1)	 	
var	 (fn-‐model,	 summary)	 =	 	
	 	 	 	 	 	 	 	 top(doClassify(X,	 y),	 10min)	

(1)	 MQL	

Op"miza"on	
(2)	 Generic	 Logical	 Plan	

grid-search

configure model

train model

down-sample

model/data
interpretation

(X', y')

load (als_clinical)

SVM Adaboost

RBF linear stumps

regularization rounds

technique

kernel

params

...

...

...

(fn-model, summary)

down-sample

(X, y)

originalfeaturization ...normalizedbin

(X, y)

fn-model

cross-validate

top-1

fn-model

summary

3	

var	 X	 =	 load("als_clinical",2	 to	 10)	
var	 y	 =	 load("als_clinical",	 1)	 	
var	 (fn-‐model,	 summary)	 =	 	
	 	 	 	 	 	 	 	 top(doClassify(X,	 y),	 10min)	

(1)	 MQL	

Op"miza"on	
(2)	 Generic	 Logical	 Plan	

grid-search

configure model

train model

down-sample

model/data
interpretation

(X', y')

load (als_clinical)

SVM Adaboost

RBF linear stumps

regularization rounds

technique

kernel

params

...

...

...

(fn-model, summary)

down-sample

(X, y)

originalfeaturization ...normalizedbin

(X, y)

fn-model

cross-validate

top-1

fn-model

summary

3	

var	 X	 =	 load("als_clinical",2	 to	 10)	
var	 y	 =	 load("als_clinical",	 1)	 	
var	 (fn-‐model,	 summary)	 =	 	
	 	 	 	 	 	 	 	 top(doClassify(X,	 y),	 10min)	

(1)	 MQL	

Op"miza"on	
(2)	 Generic	 Logical	 Plan	

grid-search

configure model

train model

down-sample

model/data
interpretation

(X', y')

load (als_clinical)

SVM Adaboost

RBF linear stumps

regularization rounds

technique

kernel

params

...

...

...

(fn-model, summary)

down-sample

(X, y)

originalfeaturization ...normalizedbin

(X, y)

fn-model

cross-validate

top-1

fn-model

summary

3	

Op"miza"on	
(2)	 Generic	 Logical	 Plan	

standard feature
normalizer

create 10-folds

cross
validation

folds

(X'', y'')

SVM
kernel: RBF

λ=10⁶ σ = 1/d ⨉ 10⁶

(model-params,
cross-validation-summary)

top-1

train model

calculate
misclassification

rate

(fn-model, summary)

(X, y)

….

cross
validation

SVM
kernel: RBF

λ=10³ σ= 1/d ⨉ 10⁶

cross
validation

AdaBoost
rounds = 20

baseline-check:
nearest neighbor

baseline-check:
most common

label

(model-params,
cross-validation-summary)

fn-model

load (als_clinical)

down-sample 10%

(X, y)

(X', y')

store
normalized folds

fn-model

(3)	 Op1mized	 Plan	

grid-search

configure model

train model

down-sample

model/data
interpretation

(X', y')

load (als_clinical)

SVM Adaboost

RBF linear stumps

regularization rounds

technique

kernel

params

...

...

...

(fn-model, summary)

down-sample

(X, y)

originalfeaturization ...normalizedbin

(X, y)

fn-model

cross-validate

top-1

fn-model

summary

DB	 Op"mizer	 meets	 ML	 Parameter	 Tuning	
More	 than	 Grid-‐Search,	 more	 than	 Rela"onal	 Query	
Op"miza"on	
MLbase	 cost-‐based	 op"miza"on:	 	
	 	 Quality	 &	 Time	 (=budget)	

	 •  Considers	 algorithms,	 system	 techniques	 and	 best	
prac1ce	 workflows	 together	

	 •  Sta1s1cs	 about	 data	 and	 algorithms	 	
à	 Hope	 to	 find	 strong	 correla"on	 between	 data	 sta"s"cs	 and	
the	 quality	 of	 an	 algorithm	 	

•  Op"miza"on	 across	 steps	 (e.g.,	 cleaning,	 feature	 extrac"on,	
classifica"on,…)	

•  Robustness/Avoiding	 Overfiing	 &	 Hypothesis	 Pi?all	 (messing	
up	 quality	 is	 worse	 than	 "me	 in	 tradi"onal	 query	 op"miza"on)	

Possible	 Op"miza"ons	 (classifica"on)	

standard feature
normalizer

create 10-folds

cross
validation

folds

(X'', y'')

SVM
kernel: RBF

λ=10⁶ σ = 1/d ⨉ 10⁶

(model-params,
cross-validation-summary)

top-1

train model

calculate
misclassification

rate

(fn-model, summary)

(X, y)

….

cross
validation

SVM
kernel: RBF

λ=10³ σ= 1/d ⨉ 10⁶

cross
validation

AdaBoost
rounds = 20

baseline-check:
nearest neighbor

baseline-check:
most common

label

(model-params,
cross-validation-summary)

fn-model

load (als_clinical)

down-sample 10%

(X, y)

(X', y')

store
normalized folds

fn-model

Rela1onal	 Op1miza1ons	 (Top-‐K	 Pushdown,	 Join-‐Ordering,…)	

Sta1c	 ML	 Selec1on	 Rules	
•  Imbalance	 of	 labels	
•  SVMs	 are	 more	 sensi"ve	 to	 the	 scale-‐parameter	 than	

AdaBoost	 to	 rounds	
•  If	 SVM	 à	 normalize	 data	 between	 [-‐1,	 1]	
•  If	 data	 contains	 outliers	 à	 pre-‐clean	 data	 or	 forego	

AdaBoost	
•  …	

Run-‐Time	 Op1miza1on	 Rules	
•  Caching:	 If	 2nd	 run	 and	 determinis"c,	 start	 with	 previously	

most	 successful	 model	 	
•  Set	 sample-‐size	 to	 fit	 Input-‐Data	 as	 well	 as	 intermediate	

result	 in	 memory	
•  Par""on	 data	 according	 to	 cross-‐valida"on	
•  …	

Cost-‐based	 Op1miza1on	 Rules	
•  Materializa"on	 and	 indexing	
•  Expected	 quality	 improvement	 based	 on	 the	 history	
•  Consider	 cost	 of	 pre-‐cleaning,	 normaliza"on,	 algorithm	

complexity,…	
•  …	

Why	 Op"mize?	 Pi|alls	

38/40	 =	 95%	

38/40	 =	 95%	

A	
B	

A	 B	

Why	 Op"mize?	
Quality	

SVM AdaBoost
original scaled

a1a 82.93 82.93 82.87
australian 85.22 85.51 86.23

breast 70.13 97.22 96.48
diabetes 76.44 77.61 76.17
fourclass 100.00 99.77 91.19
splice 88.00 87.60 91.20

Figure 3: Classifier accuracy using SVM with an RBF kernel and using AdaBoost

3.6.3 Preliminary Results

To demonstrate the possible advantages of an optimizer just for selecting among di↵erent ML
algorithms even without considering the system aspect, we implemented a prototype using two
algorithms: SVM and AdaBoost. For both algorithms, we used publicly available implementations:
LIBSVM [33] for SVM and the ML AdaBoost Toolbox [1] for AdaBoost. We evaluated the op-
timizer for a classification task similar to the one in Figure 2 with 6 datasets from the LIBSVM
website: ‘a1a’, ‘australian’, ‘breast-cancer’, ‘diabetes’, ‘fourclass’, and ‘splice’. To better visualize
the impact of finding the best ML model, we performed a full grid search over a fixed set of algo-
rithm parameters, i.e., number of rounds (r) for AdaBoost and regularization (�) and RBF scale
(�) parameters for SVM. Specifically, we tested r = {25, 50, 100, 200}, � = {10�6

, 10�3
, 1, 103, 106},

and � = 1
d ⇥ {10�6

, 10�3
, 1, 103, 106}, where d is the number of features in the dataset. For each

algorithm, set of features and parameter settings, we performed 5-fold cross validation, and report
the average results across the held-out fold.

Table 3 shows the best accuracy after tuning the parameters using grid search for the di↵erent
datasets and algorithms, with and without scaling the features (the best combination is marked in
bold). The results show first that there is no dominant combination for all datasets. Sometimes
AdaBoost outperforms SVM, sometimes scaling the features helps, sometimes it does not.

Next we turn to understanding the search problem for the parameters themselves, depicted in
Figures 4(a) and 4(b). Figure 4(a) shows, for fixed regularization �, the impact of the � parameter
in the RBF kernel on the accuracy, whereas Figure 4(b) visualizes the accuracy for varying the
number of rounds r for AdaBoost. As shown in Figure 4(a), the choice of � in the SVM problem
clearly has a huge impact on quality; automatically selecting � is important. On the other hand,
for the same datasets, it appears that the number of rounds in AdaBoost is not quite as significant
once r � 25 (shown in Figure 4(b)). Hence, an optimizer might decide to initially use AdaBoost -
without scaling and with a fixed round parameter - in order to quickly provide the user with a first
classifier. Afterwards, the system might explore SVMs with scaled features to improve the model,
before extending the search space to the remaining combinations.

The general accuracy of algorithms is just one of the aspects an optimizer may take into account.
Statistics about the dataset itself, di↵erent data layouts, algorithm speed and parallel execution
strategies (as described in the next section) are just a few additional dimensions the optimizer may
exploit to improve the learning process. In this project, we will evaluate these freedoms of choice
and build the foundation for cost-based (query) optimization for machine learning.

10

Why	 Op"mize?	
Quality	

0%#
10%#
20%#
30%#
40%#
50%#
60%#
70%#
80%#
90%#
100%#

a1a# australian# breast# diabetes# fourclass# splice#

Ac
cu
ra
cy
'

10^=6#

10^=3#

1#

10^3#

10^6#

(a) Impact of di↵erent � =

1
d ⇥{10�6, 10�3, 1, 103, 106}

on the SVM accuracy with an RBF kernel and � = 10

�6

on LIBSVM data-sets

0%#

10%#

20%#

30%#

40%#

50%#

60%#

70%#

80%#

90%#

100%#

a1a# australian# breast# diabetes# fourclass# splice#

Ac
cu
ra
cy
' 25#

50#

100#

200#

(b) Impact of r = {25, 50, 100, 200} on AdaBoost on

LIBSVM data-sets

Figure 4: Parameter Impact

4 Related Work

COML is not the first system trying to make machine learning more accessible, but it is the first to
free users from algorithm choices and to automatically optimize for distributed execution. Probably
most related to COML are Weka [4], MADLib [47], and Mahout [3]. Weka is a collection of ML
tools for data mining that simplifies their usage by providing a simple UI. Weka, however, requires
expert knowledge to choose and configure the ML algorithm and is a single node system. On the
database and distributed side, Mahout’s goal is to build a scalable ML library on top of Hadoop,
while MADLib provides an ML library for relational database systems. Neither system addresses
the (di�cult but necessary) challenge of optimizing the learning algorithms.

Google Predict [2] is Google’s proprietary web-service for prediction problems, but restricts the
maximum training data-size to 250MB. In [18], the authors make the case that databases should
natively support predictive models and present a first prototype called Longview. We extend this
vision by supporting all kinds of ML algorithms, not just predictive models. Furthermore, the
focus of this project is on the optimization for ML instead of the language integration within the
relational model.

Recently, there have been e↵orts to build distributed run-times for more advanced analytical tasks.
For example, Hyracks [27], HaLoop [32] and AMPLab’s Spark [72, 6] have special iterative in-
memory operations to better support ML algorithms. As mentioned earlier, the goal of this project
is not on inventing a new run-time for machine learning; instead we will use Spark.

SystemML [46] proposes an R-like language and shows how it can be optimized and compiled down
to MapReduce. However, SystemML tries to support ML experts to develop e�cient distributed
algorithms and does not aim at simplifying the use of ML, for example, by automatically tuning the
training step. Still, the ideas of SystemML are compelling and we might leverage them as part of our
physical plan optimization. In [41], the authors show how many ML algorithms can be expressed as
a relational-friendly convex-optimization problem, whereas the authors of [70] present techniques
to optimize inference algorithms in a probabilistic DBMS. We leverage these techniques in our
run-time, but our system aims beyond a single machine and extends the presented optimization
techniques.

This project builds on the strong foundation of declarative languages and query optimization.

11

0%#
10%#
20%#
30%#
40%#
50%#
60%#
70%#
80%#
90%#
100%#

a1a# australian# breast# diabetes# fourclass# splice#

Ac
cu
ra
cy
'

10^=6#

10^=3#

1#

10^3#

10^6#

(a) Impact of di↵erent � =

1
d ⇥{10�6, 10�3, 1, 103, 106}

on the SVM accuracy with an RBF kernel and � = 10

�6

on LIBSVM data-sets

0%#

10%#

20%#

30%#

40%#

50%#

60%#

70%#

80%#

90%#

100%#

a1a# australian# breast# diabetes# fourclass# splice#

Ac
cu
ra
cy
' 25#

50#

100#

200#

(b) Impact of r = {25, 50, 100, 200} on AdaBoost on

LIBSVM data-sets

Figure 4: Parameter Impact

4 Related Work

COML is not the first system trying to make machine learning more accessible, but it is the first to
free users from algorithm choices and to automatically optimize for distributed execution. Probably
most related to COML are Weka [4], MADLib [47], and Mahout [3]. Weka is a collection of ML
tools for data mining that simplifies their usage by providing a simple UI. Weka, however, requires
expert knowledge to choose and configure the ML algorithm and is a single node system. On the
database and distributed side, Mahout’s goal is to build a scalable ML library on top of Hadoop,
while MADLib provides an ML library for relational database systems. Neither system addresses
the (di�cult but necessary) challenge of optimizing the learning algorithms.

Google Predict [2] is Google’s proprietary web-service for prediction problems, but restricts the
maximum training data-size to 250MB. In [18], the authors make the case that databases should
natively support predictive models and present a first prototype called Longview. We extend this
vision by supporting all kinds of ML algorithms, not just predictive models. Furthermore, the
focus of this project is on the optimization for ML instead of the language integration within the
relational model.

Recently, there have been e↵orts to build distributed run-times for more advanced analytical tasks.
For example, Hyracks [27], HaLoop [32] and AMPLab’s Spark [72, 6] have special iterative in-
memory operations to better support ML algorithms. As mentioned earlier, the goal of this project
is not on inventing a new run-time for machine learning; instead we will use Spark.

SystemML [46] proposes an R-like language and shows how it can be optimized and compiled down
to MapReduce. However, SystemML tries to support ML experts to develop e�cient distributed
algorithms and does not aim at simplifying the use of ML, for example, by automatically tuning the
training step. Still, the ideas of SystemML are compelling and we might leverage them as part of our
physical plan optimization. In [41], the authors show how many ML algorithms can be expressed as
a relational-friendly convex-optimization problem, whereas the authors of [70] present techniques
to optimize inference algorithms in a probabilistic DBMS. We leverage these techniques in our
run-time, but our system aims beyond a single machine and extends the presented optimization
techniques.

This project builds on the strong foundation of declarative languages and query optimization.

11

SVM	

AdaBoost	
regulariza"on	

Scale-‐factor	

Why	 Op"mize?	
	 Speed	

•  Running	 1	 algorithm	 tends	 to	 be	 I/O	 bound	
•  Idea:	 train	 in	 parallel	 with	 different	 algorithms	
and	 parameters	 à	 Similar	 to	 shared	 cursors	
in	 DB-‐world	

•  Ques"ons:	
– How	 many	 models?	 	
à	 How	 to	 make	 it	 cache-‐aware	

–  Impact	 of	 sampling?	
– How	 to	 leverage	 modern	 CPUs,	 in	 par"cular	
vectoriza"on	 and	 CPU	 pipelining?	

Direc"on	
•  Released:	

–  MLI	 interface	
–  Half-‐full	 binders	 as	 part	 of	 Spark	
–  Some	 simple	 feature	 extractors	
–  (End-‐to-‐end	 use	 cases)	

•  Working	 on:	
–  Op"miza"on	 techniques	 	
–  Cost-‐based	 op"mizer	
–  Unified	 language	 for	 end	 users	 and	 ML	 developers	
–  Advanced	 ML	 capabili"es:	 Time-‐series	 algorithms,	 graphical	
models,	 advanced	 op"miza"ons,	 online	 updates,	 sampling	 for	
efficiency	

–  Integra"on	 into	 TupleWare:	 High-‐Performance	 analy"c	 pla|orm	
–  Visualiza"on	
	

MLBase	 -‐	 Summary	

•  MLbase	 is	 a	 first	 declara1ve	 machine-‐learning	
system	

•  It	 simplifies	 ML	 in	 the	 same	 way	 as	 databases	
simplify	 data	 management	

•  Teaser:	 TupleWare	 will	 integrate	 Mlbase	
and	 leverage	 ideas	 from	 programming	
languages	 to	 significantly	 speed-‐up	 ML	
and	 explora"ve	 data	 analysis	

Tim	 Kraska	 	
"m_kraska@brown.edu	

